• Title/Summary/Keyword: cap concrete

Search Result 88, Processing Time 0.026 seconds

Performance assessment of precast concrete pier cap system

  • Kim, T.H.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.501-516
    • /
    • 2014
  • The purpose of this study was to investigate the performance of precast concrete pier cap system. The proposed precast pier cap provides an alternative to current cast-in-place systems, particularly for projects in which a reduced construction time is desired. Five large-scale pier cap specimens were constructed and tested under quasistatic monotonic loading. The computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints with a shear key. This study documents the testing of the precast concrete pier cap system under monotonic loading and presents conclusions and design recommendations based on the experimental and analytical findings. Additional full-scale experimental research is needed to refine and confirm design details, especially for actual detailing employed in the field.

Shape Effects of Cap Concrete on Wave Transmission in Permeable Breakwaters (투수성 방파제 상부구조물의 형상효과에 관한 연구)

  • 권혁민;최한규;김태인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 1991
  • Hydralic model experiments for permeable breakwaters with three different shapes of cap concrete were carried out in a two-dimensional wave channel to investigate the shape effects of cap concrete on transmission rate of the incident waves over the breakwaters. The model test results show that energy damping effects are significant in the following order; cap concrete with dissipation holes and apron, cap concrete with apron only, and cap concrete without dissipation holes and apron. It is concluded that the significant damping effects are due to energy dissipation of the incident wave as they pass through the holes and the apron.

  • PDF

Finite Element Analysis Reinforced Concrete Slab Bridge Considering Elastic deformations of Reinforced Concrete T-type Piers (T형 교각의 탄성변형을 고려한 슬래브교의 유한요소 해석)

  • 이성철;윤동열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.100-110
    • /
    • 2000
  • In practical design of girder bridges or reinforced concrete slab bridges with T-type piers, it is usually assumed that vertical movements of superstructures are completely restrained at the locations of bearings(shoes) on a cap beam of the pier, The resulting vertical reactions are applied to the bearing for the calculation of bending moments and shear forces in the cap beam. However, in reality, the overhang parts of the cap beam will deform under the dead load of superstructures and the live load so that it may act as an elastic foundation. Due to the settlement of the elastic foundation, the actual distribution of the reactions at the bearings along the cap beam may be different from that obtained under the assumption that the vertical movements are fixed at the bearings. In the present study, investigated is the effects of elastic deformations of the T-type pier on the distribution of reactions at the bearings along the cap beam through 3-dimensional finite element analysis. Herein, for this purpose the whole structural system including the superstructure and piers as well is analyzed. It appears that the conventional practice which neglects the elastic deformations of the cap beam exhibits considerably different distributions of the reactions as compared with those obtained from the present finite element analysis. It is, therefore, recommended that in order to assess the reactions at bearings correctly the whole structural system be analyzed using 3-dimensional finite element analysis.

  • PDF

Numerical assessment of post-tensioned slab-edge column connection systems with and without shear cap

  • Janghorban, Farshad;Hoseini, Abdollah
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.71-81
    • /
    • 2018
  • Introduction of prestressed concrete slabs based on post-tensioned (PT) method aids in constructing larger spans, more useful floor height, and reduces the total weight of the building. In the present paper, for the first time, simulation of 32 two-way PT slab-edge column connections is performed and verified by some existing experimental results which show good consistency. Finite element method is used to assess the performance of bonded and unbonded slab-column connections and the impact of different parameters on these connections. Parameters such as strand bonding conditions, presence or absence of a shear cap in the area of slab-column connection and the changes of concrete compressive strength are implied in the modeling. The results indicate that the addition of a shear cap increases the flexural capacity, further increases the shear strength and converts the failure mode of connections from shear rigidity to flexural ductility. Besides, the reduction of concrete compressive strength decreases the flexural capacity, further reduces the shear strength of connections and converts the failure mode of connections from flexural ductility to shear rigidity. Comparing the effect of high concrete compressive strengths versus the addition of a shear cap, shows that the latter increases the shear capacity more significantly.

Structural Modeling Experiments and Field Adaption Evaluation of Steel Cap for Performance Development of PHC Pile (PHC Pile 두부 성능개선을 위한 파일캡의 구조모델시험 및 현장 적용성 평가)

  • Kwon, Hyuk-Joon;An, Seon-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.630-633
    • /
    • 2006
  • In this study, we concerned the steel cap and head part arrangement of PHC pile structure to complement existing construction process which have the defects such as highly hazardous circumstance for safety concerns and retard a term of works. The steel cap developed for supplement the stiffness between extend foundation and contact section of PHC pile that is based on structural theory. The experiments have been performed to evaluate the characteristics of behavior between head part of PHC pile using steel cap and extend foundation.

  • PDF

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

Analysis and Design of Approach Bridge Pile Cap in Incheon Bridge Project (인천대교 접속교 파일캡의 해석과 설계)

  • Song, Jong-Young;Shin, Hyun-Yang;Choi, Kyu-Yong;Song, Chang-Hee;Lee, Tae-Yeol;Shim, Ih-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.221-224
    • /
    • 2006
  • For structural engineers, design of pile cap causes difficulties since design of this member is not specifically addressed by codes. In general, pile cap is considered as deep beam and designed for shear and moment at specified critical section. This is called as traditional section method. However, many international design codes suggest the application of strut tie method for better design of this member. In this paper, a brief application of strut tie method to the design check of pile cap structure designed by section method is presented. Unlike well known pile cap with single column, the example pile cap has two columns. In order to find out proper load path under various load condition, three dimensional finite element method was carried out. The result indicates that provided reinforcement by traditional section method has sufficient capacity to meet the design requirements.

  • PDF

Use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders (콘크리트 원주형 공시체의 압축강도 시험을 위한 Unbonded Cap의 사용)

  • 심재원;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.161-166
    • /
    • 2000
  • To save efforts for capping in the compressive strength tests of concrete, unbonded capping system has been standardized by ASTM C 1231 and AS 1012.9, respectively. These standards, however, do not sufficiently give a full detail of accessories such as steel retaining cap and rubber pad, especially hardness of rubber. Hence, without testing for sizes of steel retaining cap and rubber pad, tests for the quality control of rubber pads were conducted in detail according to Japanese studies. Based on tests, the range of hardness for rubber pad by the compressive strength(200~ 400kgf/$\textrm{cm}^2$) of concrete has been proposed and the guideline of reuses of a rubber pad is described.

  • PDF

An insight into the prediction of mechanical properties of concrete using machine learning techniques

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;M.Ramkumar Raja;Hany S. Hussein;T.M. Yunus Khan;Pooja Sabherwal
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.263-286
    • /
    • 2023
  • Experimenting with concrete to determine its compressive and tensile strengths is a laborious and time-consuming operation that requires a lot of attention to detail. Researchers from all around the world have spent the better part of the last several decades attempting to use machine learning algorithms to make accurate predictions about the technical qualities of various kinds of concrete. The research that is currently available on estimating the strength of concrete draws attention to the applicability and precision of the various machine learning techniques. This article provides a summary of the research that has previously been conducted on estimating the strength of concrete by making use of a variety of different machine learning methods. In this work, a classification of the existing body of research literature is presented, with the classification being based on the machine learning technique used by the researchers. The present review work will open the horizon for the researchers working on the machine learning based prediction of the compressive strength of concrete by providing the recommendations and benefits and drawbacks associated with each model as determining the compressive strength of concrete practically is a laborious and time-consuming task.

Numerical analysis of RC hammer head pier cap beams extended and reinforced with CFRP plates

  • Tan, Cheng;Xu, Jia;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.461-470
    • /
    • 2020
  • This paper presents a numerical study on structural behavior of hammer head pier cap beams, extended on verges and reinforced with carbon fiber reinforced polymer (CFRP) plates. A 3-D finite element (FE) model along with a simplified analytical model are presented. Concrete damage plasticity (CDP) was adapted in the FE model and an analytical approach predicting the CFRP anchor strength was adapted in both FE and analytical model. Total five quarter-scaled pier cap beams with various CFRP reinforcing schemes were experimentally tested and analyzed with numerical approaches. Comparison between experimental results, FE results, analytical results and current ACI guideline predictions was presented. The FE results showed good agreement with experimental results in terms of failure mode, ultimate capacity, load-displacement response and strain distribution. In addition, the proposed strut-and-tie based analytical model provides the most accurate prediction of ultimate strength of extended cap beams among the three numerical approaches.