• 제목/요약/키워드: cantilever and separation

검색결과 16건 처리시간 0.018초

응집 영역 모델을 이용한 굴곡 계면을 따르는 균열 진전 거동에 관한 연구 (A Study on Crack Propagation Along a Sinusoidal Interface using Cohesive Zone Models)

  • 이현경;김현규
    • 한국전산구조공학회논문집
    • /
    • 제31권3호
    • /
    • pp.121-125
    • /
    • 2018
  • 본 연구에서는 굴곡 계면을 따른 균열 진전을 응집 요소를 사용하여 유한요소 해석을 수행하였고 균열 선단에서 복합 모드 하중을 고려하기 위하여 BK 법칙을 적용하였다. 정현파 굴곡 계면을 갖는 이중 외팔보에 하중을 부여하고 복합 모드 응집 법칙에서 응집 강도와 응집 에너지에 따른 하중-변위 선도의 변화를 알아보았다. 응집 강도가 커지면 응집 영역 크기가 상대적으로 작아지고 균열 진전에 따른 하중-변위 선도에 굴곡이 나타나는 것을 보여 주었으며 인장과 전단 응집에너지 비율에 따라 하중의 증가와 하중-변위 선도에 굴곡이 나타나는 것을 보여주었다. 또한 굴곡 계면의 형상에 따른 균열 진전 거동의 영향을 분석하였는데 균열의 형상비가 커지면 균열 진전을 위한 더 큰 균열 분리 에너지가 요구되는 것을 보여 주었다. 굴곡 계면의 형상과 응집 법칙을 변화시켜 파괴 인성을 크게 향상시킬 수 있으며 균열 진전 거동을 변화시킬 수 있게 된다.

변형을 고려한 요트 세일의 2차원 단면 해석 (Analysis of a Two-Dimensional Section of Deforming Yacht Sails)

  • 이희범;이신형;유재훈
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.308-316
    • /
    • 2011
  • Although a yacht sails operate with large displacement due to very thin thickness, many studies for flow around yacht sails have not considered the sail deformation. The sail deformation not only caused a change in the center of effect(CE) on the sail but also a change in the thrust of the sail. The change of the CE and thrust affects the center of lateral resistance(CLR) and side forces of the hull, and the balance of the yacht. These changes affect the motion of the yacht which changes the velocity of the yacht. Thus, when analyzing the flow around yacht sails, the sail deformation should be considered. In the present study, fluid-structure-interaction(FSI) analysis of a two dimensional section of yacht sails was performed to consider the effects of sail deformation on the lift and drag performance. FSI and moving mesh methods were studied. Computational methods were verified using benchmark test cases such as the flow around horizontal and vertical cantilever beams. Shape deformation, pressure distribution, lift forces and separation flow were compared for both rigid and deformable sail.

Experimental investigation of force-distribution in high-strength bolts in extended end-plate connections

  • Abdalla, K.M.;Abu-Farsakh, G.A.R.;Barakat, S.A.
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.87-103
    • /
    • 2007
  • This paper presents some of the results from an experimental research project on the behavior of extended end-plate connections subjected to moment conducted at the Structural Laboratory of Jordan University of Science and Technology. Since the connection behavior affects the structural frame response, it must be included in the global analysis and design. In this study, the behavior of six full-scale stiffened and unstiffened cantilever connections of HEA- and IPE-sections has been investigated. Eight high strength bolts were used to connect the extended end-plate to the column flange in each case. Strain gauges were installed inside each of the top six bolts in order to obtain experimentally the actual tension force induced within each bolt. Then the connection behavior is characterized by the tension force in the bolt, extended end-plate behavior, moment-rotation relation, and beam and column strains. Some or all of these characteristics are used by many Standards; therefore, it is essential to predict the global behavior of column-beam connections by their geometrical and mechanical properties. The experimental test results are compared with two theoretical (equal distribution and linear distribution) approaches in order to assess the capabilities and accuracy of the theoretical models. A simple model of the joint is established and the essential parameters to predict its strength and deformational behavior are determined. The equal distribution method reasonably determined the tension forces in the upper two bolts while the linear distribution method underestimated them. The deformation behavior of the tested connections was characterized by separation of the column-flange from the extended end-plate almost down to the level of the upper two bolts of the lower group and below this level the two parts remained in full contact. The neutral axis of the deformed joint is reasonably assumed to pass very close to the line joining the upper two bolts of the lower group. Smooth monotonic moment-rotation relations for the all tested frames were observed.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • 제4권4호
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

응집 요소를 사용한 균열 진전 유한요소 해석에서 응집 법칙의 영향에 대한 연구 (A Study on the Effect of Cohesive Laws on Finite Element Analysis of Crack Propagation Using Cohesive Elements)

  • 서형석;백형찬;김현규
    • 대한기계학회논문집A
    • /
    • 제38권4호
    • /
    • pp.401-407
    • /
    • 2014
  • 본 논문에서는 3점 굽힘과 이중 외팔보 문제에 대하여 응집 요소를 사용한 유한요소 균열 진전해석을 수행하고 응집 법칙의 영향을 알아보았다. 응집 요소는 ABAQUS/Standard의 사용자 서브루틴(UEL)으로 구현하였으며 응집 법칙은 다항식 형태의 응집 트랙션-열림 변위의 관계식을 사용하였고 응집 법칙의 형상에 대한 영향을 알아 보기 위하여 다항식의 계수를 변화시켰다. 동일한 파손 에너지와 응집 강도를 갖지만 다른 형상의 응집 법칙에 대한 해석을 수행하고 변위-반력 곡선을 비교하여 균열 진전 거동의 변화를 알아보았다. 또한 요소 크기에 따른 균열 진전 해석 결과의 영향을 논의하였다.