• Title/Summary/Keyword: candidate gene

Search Result 805, Processing Time 0.039 seconds

Identification of marbling-related candidate genes in M. longissimus dorsi of high- and low marbled Hanwoo (Korean Native Cattle) steers

  • Lee, Seung-Hwan;Cho, Yong-Min;Lee, Sang-Hong;Kim, Bum-Soo;Kim, Nam-Kuk;Choy, Yeon-Ho;Kim, Kyoung-Hoon;Yoon, Du-Hak;Im, Seok-Ki;Oh, Sung-Jong;Park, Eung-Woo
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.846-851
    • /
    • 2008
  • This study was conducted to identify marbling-related candidate genes in M. longissimus dorsi of high- and low-marbled Hanwoo. The longissimus dorsi muscles were selected for gene expression from eight Hanwoo steer carcasses based on crude fat content. In the analysis of variance, gene expression of five candidate genes, FABP4, SCD, $PPAR\gamma$, Titin and Nebulin was determined to be significantly different between high- and low-marbled Hanwoo steers (P < 0.0001). The Pik-4 and CaMK II genes were also shown to have a significant effect on crude fat content (P < 0.01). In the analysis of the differential expression between high- and low marbled groups, FABP4 gene expression was approximately 2 times higher in the high marbled group relative to the low marbled group. However, the $PPAR\gamma$ and SCD gene were highly expressed in the low marbled group. In addition, Titin and Nebulin were highly expressed in the low marbled group when placed under relatively high shear force. Finally, the Pik-4 and CaM K II gene also displayed a high expression pattern in the low marbled group.

Association of Sequence Variations in DGAT 1 Gene with Economic Traits in Hanwoo (Korea Cattle)

  • Kong, H.S.;Oh, J.D.;Lee, J.H.;Yoon, D.H.;Choi, Y.H.;Cho, B.W.;Lee, H.K.;Jeon, G.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.817-820
    • /
    • 2007
  • The effects of diacylglycerol O-acyltransferase (DGAT1) candidate gene polymorphism on the economic traits of Hanwoo were studied. Through sequencing analysis, two polymorphism sites at K232A and T11993C were established and were analyzed by PCR-RFLP. The PCR-RFLP analysis for K232A showed that the frequencies of alleles K and A were 0.75 and 0.25, respectively, and the frequencies of genotypes for K/K, K/A and A/A were estimated as 0.509, 0.491 and 0, respectively. In the PCR-RFLP analysis for T11993C, we found allele frequencies of 0.773 and 0.227 for T and A, respectively, and 0.546, 0.454 and 0 for the T/T, T/C and C/C genotype frequencies, respectively. No significant effects on economic traits in Hanwoo were found in the separate analysis of K232A and T11993C polymorphisms, but the interaction between K232A and T11993C showed a significant effect (p<0.005) on marbling score. The DGAT1 candidate gene was found to have a significant effect not only on milk yield and component traits but also on the metabolism of intramuscular fat.

BRCA1 Promoter Hypermethylation Signature for Early Detection of Breast Cancer in the Vietnamese Population

  • Truong, Phuong Kim;Lao, Thuan Duc;Doan, Thao Phuong Thi;Huyen, Thuy Ai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9607-9610
    • /
    • 2014
  • Breast cancer, a leading cause of death among women in most countries worldwide, is rapidly increasing in incidence in Vietnam. One of biomarkers is the disruption of the genetic material including epigenetic changes like DNA methylation. With the aim of finding hypermethylation at CpG islands of promoter of BRCA1 gene, belonged to the tumor suppressor gene family, as the biomarker for breast cancer in Vietnamese population, sensitive methyl specific PCR (MSP) was carried out on 115 samples including 95 breast cancer specimens and 20 normal breast tissues with other diseases which were obtained from Ho Chi Minh City Medical Hospital, Vietnam. The result indicated that the frequency of BRCA1 hypermethylation reached 82.1% in the cases (p<0.001). In addition, the DNA hypermethylation of this candidate gene increased the possibility to be breast cancer with high incidence via calculated odd ratios (p<0.05). In conclusion, hypermethylation of this candidate gene could be used as the promising biomarker application with Vietnamese breast cancer patients.

Heterologous Microarray Hybridization Used for Differential Gene Expression Profiling in Benzo[a]pyrene-exposed Marine Medaka

  • Woo, Seon-Ock;Won, Hyo-Kyoung;Jeon, Hye-Young;Kim, Bo-Ra;Lee, Taek-Kyun;Park, Hong-Seog;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • Differential gene expression profiling was performed in the hepatic tissue of marine medaka fish (Oryzias javanicus) after exposure to benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), by heterologous hybridization using a medaka cDNA microarray. Thirty-eight differentially expressed candidate genes, of which 23 were induced and 15 repressed (P<0.01), were identified and found to be associated with cell cycle, development, endocrine/reproduction, immune, metabolism, nucleic acid/protein binding, signal transduction, or non-categorized. The presumptive physiological changes induced by BaP exposure were identified after considering the biological function of each gene candidate. The results obtained in this study will allow future studies to assess the molecular mechanisms of BaP toxicity and the development of a systems biology approach to the stress biology of organic chemicals.

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.17-17
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE_CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P)>7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

Single-trait GWAS of Leaf Rolling Index with the Korean Rice Germplasm

  • ByeongYong Jeong;Muhyun Kim;Tae-Ho Ham;Seong-Gyu Jang;Ah-Rim Lee;Min young Song;Soon-Wook Kwon;Joohyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.243-243
    • /
    • 2022
  • Leaves are an important organism for photosynthesis and transpiration. The shape of leaf is crucial factor affecting plant architecture. V-shape leaf rolling is enhancing canopy photosynthesis by increasing the CO2 penetration and the light capture by reducing the shadow between the leaves. Therefore, moderate leaf rolling is thought to more high grain yield per area than flat leaf. We investigated 278 KRICE CORE accession's Adaxial Leaf Rolling Index (LRI) in first heading using the following equation. For each accession, genomic DNA was used for sequencing. We sequenced the genomics with ~8 X coverage to detect SNPS. Raw reads were aligned against the rice reference (IRGSP 1.0) for SNP identification and genotype calling. To generate genotype data for GWAS, SNPs were filtered with minor allele frequency 0.05. Finally, 841,134 high-quality SNPs were used for our GWAS. The significant threshold was -log10(P) >7.23. From the results, 2 significance SNP were detected. Considering the LD block of 250kbp, 60 candidate gene were selected including Hypothetical gene and Conserved gene. In this poster, we analyzed candidate gene affecting adaxial Leaf Rolling through single-trait GWAS.

  • PDF

Molecular Identification and Fine Mapping of a Major Quantitative Trait Locus, OsGPq3 for Seed Low-Temperature Germinability in Rice

  • Nari Kim;Rahmatullah Jan;Jae-Ryoung Park;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.283-283
    • /
    • 2022
  • Abiotic stresses such as high/low temperature, drought, salinity, and submergence directly or indirectly influence the physiological status and molecular mechanisms of rice which badly affect yield. Especially, the low temperature causes harmful influences in the overall process of rice growth such as uneven germination and the establishment of seedlings, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In this study, 120 lines of Cheongcheong/Nagdong double haploid population were used for quantitative trait locus analysis of low-temperature germinability. The results showed significant difference in germination under low different temperature conditions. In total, 4 QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the 4 QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real time polymerase chain reaction. Based on gene function annotation and level of expression under low-temperature, our study suggested OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding.

  • PDF

Loss of Heterozygosity at the Calcium Regulation Gene Locus on Chromosome 10q in Human Pancreatic Cancer

  • Long, Jin;Zhang, Zhong-Bo;Liu, Zhe;Xu, Yuan-Hong;Ge, Chun-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2489-2493
    • /
    • 2015
  • Background: Loss of heterozygosity (LOH) on chromosomal regions is crucial in tumor progression and this study aimed to identify genome-wide LOH in pancreatic cancer. Materials and Methods: Single-nucleotide polymorphism (SNP) profiling data GSE32682 of human pancreatic samples snap-frozen during surgery were downloaded from Gene Expression Omnibus database. Genotype console software was used to perform data processing. Candidate genes with LOH were screened based on the genotype calls, SNP loci of LOH and dbSNP database. Gene annotation was performed to identify the functions of candidate genes using NCBI (the National Center for Biotechnology Information) database, followed by Gene Ontology, INTERPRO, PFAM and SMART annotation and UCSC Genome Browser track to the unannotated genes using DAVID (the Database for Annotation, Visualization and Integration Discovery). Results: The candidate genes with LOH identified in this study were MCU, MICU1 and OIT3 on chromosome 10. MCU was found to encode a calcium transporter and MICU1 could encode an essential regulator of mitochondrial $Ca^{2+}$ uptake. OIT3 possibly correlated with calcium binding revealed by the annotation analyses and was regulated by a large number of transcription factors including STAT, SOX9, CREB, NF-kB, PPARG and p53. Conclusions: Global genomic analysis of SNPs identified MICU1, MCU and OIT3 with LOH on chromosome 10, implying involvement of these genes in progression of pancreatic cancer.