• Title/Summary/Keyword: cancer-associated fibroblasts

Search Result 31, Processing Time 0.022 seconds

Polysaccharide from Polygonatum Inhibits the Proliferation of Prostate Cancer-Associated Fibroblasts Cells

  • Han, Shu-Yu;Hu, Ming-Hua;Qi, Guan-Yun;Ma, Chao-Xiong;Wang, Yuan-Yuan;Ma, Fang-Li;Tao, Ning;Qin, Zhi-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3829-3833
    • /
    • 2016
  • Inhibition of cancer-associated fibroblasts (CAFs) may improve the efficacy of cancer therapy. Polysaccharide extracted from polygonatum can selectively inhibit the growth of prostate-CAFs (p<0.001) without inhibiting the growth of normal fibroblasts (NAFs). Polysaccharides from polygonatum stimulate autophagy of prostate-CAFs. 3-methyl-adenine(3-MA) is an autophagy inhibitor. 3-MA was added to prostate-CAFs with polysaccharide from polygonatum to determine whether autophagy plays an important role in the restrained effect. Finally, polysaccharide from polygonatum treatment significantly increased the activation of Beclin-1 and LC3, key autophagy proteins. Polysaccharide from polygonatum stimulates autophagy of prostate-CAFs and inhibits prostate-CAF growth, indicating that a novel anti-cancer strategy involves inhibiting the growth of prostate-CAFs.

FAP Inhibitors as Novel Small Molecules for Cancer Imaging using Radionuclide

  • Anvar Mirzaei;Jung-Joon Min;Dong-Yeon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2023
  • Tumors are encircled by various non-cancerous cell types in the extracellular matrix, including fibroblasts, endothelial cells, immune cells, and cytokines. Fibroblasts are the most critical cells in the tumor stroma and play an important role in tumor development, which has been highlighted in some epithelial cancers. Many studies have shown a tight connection between cancerous cells and fibroblasts in the last decade. Regulatory factors secreted into the tumor environment by special fibroblast cells, cancer-associated fibroblasts (CAFs), play an important role in tumor and vessel development, metastasis, and therapy resistance. This review addresses the development of FAP inhibitors, emphasizing the first, second, and latest generations. First-generation inhibitors exhibit low selectivity and chemical stability, encouraging researchers to develop new scaffolds based on preclinical and clinical data. Second-generation enzymes such as UAMC-1110 demonstrated enhanced FAP binding and better selectivity. Targeted treatment and diagnostic imaging have become possible by further developing radionuclide-labeled fibroblast activation protein inhibitors (FAPIs). Although all three FAPIs (01, 02, and 04) showed excellent preclinical and clinical findings. The final optimization of these FAPI scaffolds resulted in FAPI-46 with the highest tumor-to-background ratio and better binding affinity.

Quantitative Changes in Tumor-Associated M2 Macrophages Characterize Cholangiocarcinoma and their Association with Metastasis

  • Thanee, Malinee;Loilome, Watcharin;Techasen, Anchalee;Namwat, Nisana;Boonmars, Thidarut;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.3043-3050
    • /
    • 2015
  • The tumor microenvironment (TME) includes numerous non-neoplastic cells such as leukocytes and fibroblasts that surround the neoplasm and influence its growth. Tumor-associated macrophages (TAMs) and cancerassociated fibroblasts (CAFs) are documented as key players in facilitating cancer appearance and progression. Alteration of the macrophage (CD68, CD163) and fibroblast (${\alpha}-SMA$, FSP-1) cells in Opisthorchis viverrini (Ov) -induced cholangiocarcinoma (CCA) was here assessed using liver tissues from an established hamster model and from 43 human cases using immunohistochemistry. We further investigated whether M2-activated TAMs influence CCA cell migration ability by wound healing assay and Western blot analysis. Macrophages and fibroblasts change their phenotypes to M2-TAMs (CD68+, CD163+) and CAFs (${\alpha}-SMA+$, FSP-1+), respectively in the early stages of carcinogenesis. Interestingly, a high density of the M2-TAMs CCA in patients is significantly associated with the presence of extrahepatic metastases (p=0.021). Similarly, CD163+ CCA cells are correlated with metastases (p=0.002), and they may be representative of an epithelial-to-mesenchymal transition (EMT) with increased metastatic activity. We further showed that M2-TAM conditioned medium can induce CCA cell migration as well as increase N-cadherin expression (mesenchymal marker). The present work revealed that significant TME changes occur at an early stage of Ov-induced carcinogenesis and that M2-TAMs are key factors contributing to CCA metastasis, possibly via EMT processes.

Cathepsin D Expression in Oral Squamous Cell Carcinoma and Cancer-Associated Fibroblasts: A Preliminary Study

  • Kim, Dokyeong;Moon, Sook
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.227-232
    • /
    • 2021
  • Background: Cancer-associated fibroblasts (CAFs) are abundant in tumor microenvironments and interact with cancer cells to promote tumor proliferation in oral squamous cell carcinoma (OSCC). Cathepsin D (CTSD) is a soluble lysosomal aspartic endopeptidase involved in tumor proliferation and angiogenesis. In this preliminary study, we observed CTSD expression in OSCC and CAFs, postulating that CTSD might act as a bridge between OSCC and CAFs. Methods: Human epidermal keratinocytes (HEKs), OSCC, and immortalized human normal oral fibroblasts (hTERT-hNOFs) were used in this study. Additionally, we used hTERT-hNOFs transfected with an empty vector, WT (wild-type)-YAP (Yes-associated protein), and YAPS127A (YAP serine 127 to alanine). YAP127A hTERT-hNOFs activated fibroblasts similar to CAFs. To identify CTSD expression between OSCC and CAFs, conditioned medium (CM) was collected from each cell. Protein expression of CTSD was identified by western blotting. Results: To identify the expression of CTSD in fibroblasts stimulated by OSCC, we treated fibroblasts with CM from HEK and OSCC. Results indicated that hTERT-hNOFs with OSCC CM showed a weakly increased expression of CTSD compared to stimulation by HEK CM. This indicates that CAFs, YAPS127 hTRET-hNOFs, overexpress CTSD protein. HEK cells showed no CTSD expression, regardless of treatment with fibroblast CM, whereas OSCC highly expressed CTSD proteins compared with the CTSD expression in HEK cells. We also found that CTSD expression was unaffected by changes in transforming growth factor-β levels. Conclusion: This study proposes that CTSD might have potential as an interacting executor between OSCC and CAFs. Further studies are needed to investigate the role of CTSD in tumor and stromal cells.

Immune Regulatory Function of Cancer-Associated Fibroblasts in Non-small Cell Lung Cancer

  • Hyewon Lee;Mina Hwang;Seonae Jang;Sang-Won Um
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.4
    • /
    • pp.304-318
    • /
    • 2023
  • Background: Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment and significantly contribute to immune evasion. We investigated the effects of CAFs on the immune function of CD4+ and CD8+ T cells in non-small cell lung cancer (NSCLC). Methods: We isolated CAFs and normal fibroblasts (NFs) from tumors and normal lung tissues of NSCLC patients, respectively. CAFs were co-cultured with activated T cells to evaluate their immune regulatory function. We investigated the effect of CAF conditioned medium (CAF-CM) on the cytotoxicity of T cells. CAFs were also co-cultured with activated peripheral blood mononuclear cells and further incubated with cyclooxygenase-2 (COX2) inhibitors to investigate the potential role of COX2 in immune evasion. Results: CAFs and NFs were isolated from the lung tissues (n=8) and lymph nodes (n=3) of NSCLC patients. Immune suppressive markers, such as COX2 and programmed death-ligand 1 (PD-L1), were increased in CAFs after co-culture with activated T cells. Interestingly, CAFs promoted the expression of programmed death-1 in CD4+ and CD8+ T cells, and strongly inhibited T cell proliferation in allogenic and autologous pairs of CAFs and T cells. CAF-CM decreased the cytotoxicity of T cells. COX2 inhibitors partially restored the proliferation of CD4+ and CD8+ T cells, and downregulated the expression of COX2, prostaglandin E synthase, prostaglandin E2, and PD-L1 in CAFs. Conclusion: CAFs promote immune evasion by suppressing the function of CD4+ and CD8+ T cells via their effects on COX2 and PD-L1 in NSCLC. The immunosuppressive function of CAFs could be alleviated by COX2 inhibitors.

miR-186 Regulates Glycolysis through Glut1 During the Formation of Cancer-associated Fibroblasts

  • Sun, Pan;Hu, Jun-Wei;Xiong, Wu-Jun;Mi, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4245-4250
    • /
    • 2014
  • Emerging evidence has suggested that glycolysis is enhanced in cancer-associated fibroblasts (CAF), and miR-186 is downregulated during the CAF formation. However, it is not clear whether miR-186 is involved in the regulation of glycolysis and what the role of miR-186 plays during the CAF formation. In this study, quantitative PCR analysises show miR-186 is downregulated during the CAF formation. Moreover, miR-186 targets the 3' UTR of Glut1, and its overexpression results in the degradation of Glut1 mRNA, which eventually reduces the level of Glut1 protein. On the other hand, knockdown of miR-186 increased the expression of Glut1. Both time course and dose response experiments also demonstrated that the protein and mRNA levels of Glut1 increase during CAF formation, according to Western blot and quantitative PCR analyses, respectively. Most importantly, besides the regulation on cell cycle progression, miR-186 regulates glucose uptake and lactate production which is mediated by Glut1. These observations suggest that miR-186 plays important roles in glycolysis regulation as well as cell cycle checkpoint activation.

Force-mediated proinvasive matrix remodeling driven by tumor-associated mesenchymal stem-like cells in glioblastoma

  • Lim, Eun-Jung;Suh, Yongjoon;Kim, Seungmo;Kang, Seok-Gu;Lee, Su-Jae
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.182-187
    • /
    • 2018
  • In carcinoma, cancer-associated fibroblasts participate in force-mediated extracellular matrix (ECM) remodeling, consequently leading to invasion of cancer cells. Likewise, the ECM remodeling actively occurs in glioblastoma (GBM) and the consequent microenvironmental stiffness is strongly linked to migration behavior of GBM cells. However, in GBM the stromal cells responsible for force-mediated ECM remodeling remain unidentified. We show that tumor-associated mesenchymal stem-like cells (tMSLCs) provide a proinvasive matrix condition in GBM by force-mediated ECM remodeling. Importantly, CCL2-mediated Janus kinase 1 (JAK1) activation increased phosphorylation of myosin light chain 2 in tMSLCs and led to collagen assembly and actomyosin contractility. Collectively, our findings implicate tMSLCs as stromal cells providing force-mediated proinvasive ECM remodeling in the GBM microenvironment, and reminiscent of fibroblasts in carcinoma.

The Effect of Cancer Associated Fibroblasts(CAFs) and CD44 of CAFs on the Motility of Cancer Cells in Head and Neck Squamous Cell Carcinoma (두경부편평세포암에서 암-연관 섬유아세포가 암세포의 운동성에 미치는 영향과 암-연관 섬유아세포에서 과발현되는 CD44의 역할)

  • Shim, Seon-Hui;Hah, J. Hun;Cho, Soo Youn;Kim, Tae-Min;Koh, Young-Il;Kim, Dong-Wan;Lee, Choon-Taek;Heo, Dae Seog;Sung, Myung-Whun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • 배경 및 목적 암-연관 섬유아세포(Cancer-associated fibroblasts, CAF)는 종양미세환경의 가장 중요한 요소의 하나다. 그래서 두경부편평세포암에 대해 CAF가 암세포의 운동성에 미치는 영향을 평가하고, CAF에 과발현되는 CD44의 역할에 대해 평가하고자 하였다. 재료 및 방법 두경부암환자의 종양조직에서 CAF를 분리하고, 비종양성 조직으로부터 정상 섬유아세포(NHF)를 분리하였다. 창상치유분석과 상하 챔버를 이용한 3차원 세포 이동 분석을 이용하여, CAF가 암세포의 이동에 미치는 영향을 분석하고, CAF에서 과발현되는 CD44를 중화항체로 CAF를 차단했을 때 암세포 이동의 변화를 관찰하였다. 결과 NHF에 비해 CAF에서 CD44가 과발현되는 것을 관찰하였다. 창상치유분석에서 CAF와 같이 배양된 암세포는 NHF와 같이 배양된 암세포에 비해 더 빠른 이동을 보였다. CD44 중화 항체를 처리했을 때는 암세포의 이동성이 저해되었다. 결론 CAF는 종양미세환경에서 암세포의 운동성을 조절하는 중요한 인자의 하나일 것으로 사료된다. CD44는 CAF의 기능을 매개하는 중요한 표지자 중 하나로 생각된다.

Efficacy of biological inhibitors in three-dimensional culture models of oral squamous cell carcinoma

  • Eun Kyoung Kim;Sook Moon;Myung-Jin Lee;Dokyeong Kim
    • International Journal of Oral Biology
    • /
    • v.49 no.1
    • /
    • pp.18-25
    • /
    • 2024
  • Despite advancements in therapeutic approaches, radiotherapy and cisplatin-based chemotherapy remain primary noninvasive treatments for patients with oral squamous cell carcinoma (OSCC). Moreover, the 5-year survival rate for patients with OSCC has remained almost unchanged for several decades, and many side effects of chemotherapy still exist. In this study, three-dimensional (3D) models of OSCC were established using fibroblasts, and the efficacy of various biological inhibitors was evaluated. A culture of epithelial cells with two types of fibroblasts (hTERT-hNOFs and cancer-associated fibroblasts) within a type I collagen matrix resulted in the formation of a continuous layer of tightly packed cells compared to models without fibroblasts. Furthermore, the effects of biological chemicals, including Y27632, latrunculin A, and verteporfin, on these models were investigated. The stratified formation of the epithelial layer and invasion in OSCC 3D-culture models were effectively inhibited by verteporfin, whereas invasion was weakly inhibited by Y27632 and latrunculin. Collectively, the developed OSCC 3D-culture models established with fibroblasts demonstrated the potential for drug screening, with verteporfin showing promising efficacy.

Calpeptin Prevents Malignant Pleural Mesothelioma Cell Proliferation via the Angiopoietin-1/Tie-2 System

  • Tabata, Chiharu;Tabata, Rie;Nakano, Takashi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3405-3409
    • /
    • 2016
  • Malignant pleural mesothelioma (MPM), an aggressive malignant tumor of mesothelial origin associated with asbestos exposure, shows a limited response to conventional chemotherapy and radiotherapy. Therefore, the overall survival of MPM patients remains very poor. Progress in the development of therapeutic strategies for MPM has been limited. We recently reported that the calpain inhibitor, calpeptin exerted inhibitory effects on pulmonary fibrosis by inhibiting the proliferation of lung fibroblasts. In the present study, we examined the preventive effects of calpeptin on the cell growth of MPM, the origin of which is mesenchymal cells, similar to lung fibroblasts. Calpeptin inhibited the proliferation of MPM cells, but not mesothelial cells. It also prevented 1) the expression of angiopoietin (Ang)-1 and Tie-2 mRNA in MPM cells, but not mesothelial cells and 2) the Ang-1-induced proliferation of MPM cells through an NF-kB dependent pathway, which may be the mechanism underlying the preventive effects of calpeptin on the growth of MPM cells. These results suggest potential clinical use of calpeptin for the treatment of MPM.