• 제목/요약/키워드: cancer cell proliferation

검색결과 1,864건 처리시간 0.025초

Screening for Del 185 AG and 4627C>A BRCA1 Mutations in Breast Cancer Patients from Lahore, Pakistan

  • Aziz, Faiza;Fatima, Warda;Mahmood, Saqib;Khokher, Samina
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1725-1727
    • /
    • 2016
  • Breast cancer contributes to approximately 23% of the cancer cases identified and 14% of cancer related deaths worldwide. Including a strong association between genetic and environmental factors, breast cancer is a complex and multi factorial disorder. Two high penetration breast cancer susceptibility genes (BRCA1 and BRCA2) have been identified, and germ line mutations in these are thought to account for between 5% and 10% of all breast cancer cases. The human BRCA1 gene, located on 17q, is involved in the regulation of cell proliferation by aiding in DNA repair, transcriptional responses to DNA damage and cell cycle check points. Mutations in this gene enhance cell proliferation and facilitate formation of tumors. Two mutations, the 185 deletion of AG and the 4627 substitution from C to A, are founder mutations in the BRCA1 gene for breast cancer in Asian populations. Allele specific PCR was performed to detect these selected mutations in 120 samples. No mutation of 4627 C to A was detected in the samples and only one of the patients had the 185 del AG mutation in the heterozygous condition. Our collected samples had lower consanguinity and family history indicating the greater involvement of environmental as compared to genetic factors.

Silymarin-Mediated Degradation of c-Myc Contributes to the Inhibition of Cell Proliferation in Human Colorectal Cancer Cells

  • Eo, Hyun Ji;Jeong, Jin Boo;Koo, Jin Suk;Jeong, Hyung Jin
    • 한국자원식물학회지
    • /
    • 제30권3호
    • /
    • pp.265-271
    • /
    • 2017
  • In this study, we elucidated the molecular mechanism of silymarin by which silymarin may inhibits cell proliferation in human colorectal cancer cells in order to search the new potential anti-cancer target associated with the cell growth arrest. Silymarin reduced the level of c-Myc protein but not mRNA level indicating that silymarin-mediated downregulation of c-Myc may result from the proteasomal degradation. In the confirmation of silymarin-mediated c-Myc degradation, MG132 as a proteasome inhibitor attenuated c-Myc degradation by silymarin. In addition, silymarin phosphorylated the threonine-58 (Thr58) of c-Myc and the point mutation of Thr58 to alanine blocked its degradation by silymarin, which indicates that Thr58 phosphorylation may be an important modification for silymarin-mediated c-Myc degradation. We observed that the inhibition of ERK1/2, p38 and $GSK3{\beta}$ blocked the Thr58 phosphorylation and subsequent c-Myc degradation by silymarin. Finally, the point mutation of Thr58 to alanine attenuated silymarin-mediated inhibition of the cell growth. The results suggest that silymarin induces the cell growth arrest through c-Myc proteasomal degradation via ERK1/2, p38 and $GSK3{\beta}-dependent$ Thr58 phosphorylation.

Development of TGF-$\beta$ Resistance During Malignant Progression

  • Kim, Yong-Seok;Yi, Young-Suk;Choi, Shin-Geon;Kim, Seong-Jin
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 1999
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is the prototypical multifunctional cytokine, participating in the regulation of vital cellular activities such as proliferation and differentiations as well as a number of basic physiological functions. The effects of TGF-$\beta$ are critically dependent on the expression and distribution of a family of TGF-$\beta$ receptors, the TGF-$\beta$ types I, II, and III. It is now known that a wide variety of human pathology can be caused by aberrant expression and function of these receptors. the coding sequence of the type II receptor (RII) appears to render it uniquely susceptible to DNA replication errors in the course of normal cell division. By virtue of its key role in the regulation of cell proliferation, TGF-$\beta$ RII should be considered as a tumor suppressor gene. High levels of mutation in the TGF-$\beta$ RII gene have been observed in a wide range of primarily epithelial malignancies, including colon and gastric cancer. It appears likely that mutation of the TGF-$\beta$ RII gene may be a very critical step in the pathway of carcinogenesis.

  • PDF

Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells

  • Kim, Eunbi;Na, Sunghun;An, Borim;Yang, Se-Ran;Kim, Woo Jin;Ha, Kwon-Soo;Han, Eun-Taek;Park, Won Sun;Lee, Chang-Min;Lee, Ji Yoon;Lee, Seung-Joon;Hong, Seok-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.161-168
    • /
    • 2017
  • Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-$1{\alpha}$ and K562) in vitro using $Transwell^{(R)}$ co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-$1{\alpha}$ and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.

RASSF1A Suppresses Proliferation of Cervical Cancer Cells

  • Feng, Lei;Li, Jie;Yan, Ling-Di;Tang, Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5917-5920
    • /
    • 2014
  • Background: This study aimed to explore the effects of ras association domain family 1 A (RASSF1A) on proliferation and apoptosis of human cervical cancer cell line Hela cells. Materials and Methods: RASSF1A was cloned into the pcDNA3.1(+) vector to generate pcDNA3.1(+)-RASSF1A plasmid for transfection into Hela cells. Changes in the proliferation and apoptosis of cultured Hela cells were examined by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium chloride assay and flow cytometry. A protein array was used to analyze the expression of apoptotic factors. Results: Plasmid pcDNA3.1(+)-RASSF1A was generated and transfected into Hela cells to stably express RASSF1A in Hela cells. RASSF1A transfection was effective in inhibiting the proliferation of Hela cells up to 52.4%, as compared to cells transfected with an empty plasmid. RASSF1A expression also successfully induced apoptosis in human cervical cells with an apoptosis rate of 20.5%. More importantly, protein array results showed that RASSF1 A transfection induced overexpression of p21 and caspase 8, while decreasing the expression of survivin in Hela cells. Conclusions: RASSF1A expression was effective in suppressing the proliferation and increasing apoptosis of Hela cells, and may be a potential therapy for cervical cancer in clinic.

IGF-1 from Adipose-Derived Mesenchymal Stem Cells Promotes Radioresistance of Breast Cancer Cells

  • Yang, Hui-Ying;Qu, Rong-Mei;Lin, Xiao-Shan;Liu, Tong-Xin;Sun, Quan-Quan;Yang, Chun;Li, Xiao-Hong;Lu, Wei;Hu, Xiao-Fang;Dai, Jing-Xing;Yuan, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10115-10119
    • /
    • 2015
  • Purpose: The aim of this study was to investigate effects of adipose-derived mesenchymal stem cells (AMSCs) on radioresistance of breast cancer cells. Materials and Methods: MTT assays were used to detect any influence of AMSC supernatants on proliferation of breast cancer cells; cell migration assays were used to determine the effect of breast cancer cells on the recruitment of AMSCs; the cell survival fraction post-irradiation was assessed by clonogenic survival assay; ${\gamma}$-H2AX foci number post-irradiation was determined via fluorescence microscopy; and expression of IGF-1R was detected by Western blotting. Results: AMSC supernatants promoted proliferation and radioresistance of breast cancer cells. Breast cancer cells could recruit AMSCs, especially after irradiation. IGF-1 derived from AMSCs might be responsible for the radioresistance of breast cancer cells. Conclusions: Our results suggest that AMSCs in the tumor microenvironment may affect the outcome of radiotherapy for breast cancer in vitro.

Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line

  • Kim, Mi-Yeon;Yoo, Byong Chul;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.251-255
    • /
    • 2014
  • Background: Ginsenoside Rp1 (G-Rp1) is a novel ginsenoside derived from ginsenoside Rk1. This compound was reported to have anticancer, anti-platelet, and anti-inflammatory activities. In this study, we examined the molecular target of the antiproliferative and proapoptotic activities of G-Rp1. Methods: To examine the effects of G-Rp1, cell proliferation assays, propidium iodine staining, proteomic analysis by two-dimensional gel electrophoresis, immunoblotting analysis, and a knockdown strategy were used. Results: G-Rp1 dose-dependently suppressed the proliferation of colorectal cancer LoVo cells and increased their apoptosis. G-Rp1 markedly upregulated the protein level of apolipoprotein (Apo)-A1 in LoVo, SNU-407, DLD-1, SNU-638, AGS, KPL-4, and SK-BR-3 cells. The knockdown of Apo-A1 by its small-interfering RNA increased the levels of cleaved poly(ADP-ribose) polymerase and p53 and diminished the proliferation of LoVo cells. Conclusion: These results suggest that G-Rp1 may act as an anticancer agent by strongly inhibiting cell proliferation and enhancing apoptosis through upregulation of Apo-A1.

Knockdown of Circ_0000144 Suppresses Cell Proliferation, Migration and Invasion in Gastric Cancer Via Sponging MiR-217

  • Ji, Fengcun;Lang, Chao;Gao, Pengfei;Sun, Huanle
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.784-793
    • /
    • 2021
  • Previous studies have uncovered the role of circ_0000144 in various tumors. Here, we investigated the function and mechanism of circ_0000144 in gastric cancer (GC) progression. The expression of circ_0000144 in GC tissues and cells was detected through quantitative real-time polymerase chain reaction (qRT-PCR) method. Gain- and loss-of-function experiments including colony formation, wound healing and transwell assays were performed to examine the role of circ_0000144 in GC cells. Furthermore, western blot was conducted to determine the expressions of epithelial mesenchymal transition (EMT)-related proteins. The interaction between circ_0000144 and miR-217 was analyzed by bioinformatic analysis and luciferase reporter assays. The circ_0000144 expression was obviously upregulated in GC tissues and cells. Silencing of circ_0000144 inhibited cell proliferation, migration and invasion of GC cells, but ectopic expression of circ_0000144 showed the opposite results. Moreover, circ_0000144 sponged miR-217, and rescue assays revealed that silencing miR-217 expression reversed the inhibitory effect of circ_0000144 knockdown on the progress of GC. Our findings reveal that circ_0000144 inhibition suppresses GC cell proliferation, migration and invasion via absorbing miR-217, providing a new biomarker and potential therapeutic target for treatment of GC.

The TREK2 Channel Is Involved in the Proliferation of 253J Cell, a Human Bladder Carcinoma Cell

  • Park, Kyung-Sun;Han, Min Ho;Jang, Hee Kyung;Kim, Kyung-A;Cha, Eun-Jong;Kim, Wun-Jae;Choi, Yung Hyun;Kim, Yangmi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권6호
    • /
    • pp.511-516
    • /
    • 2013
  • Bladder cancer is the seventh most common cancer in men that smoke, and the incidence of disease increases with age. The mechanism of occurrence has not yet been established. Potassium channels have been linked with cell proliferation. Some two-pore domain $K^+$ channels (K2P), such as TASK3 and TREK1, have recently been shown to be overexpressed in cancer cells. Here we focused on the relationship between cell growth and the mechanosensitive K2P channel, TREK2, in the human bladder cancer cell line, 253J. We confirmed that TREK2 was expressed in bladder cancer cell lines by Western blot and quantitative real-time PCR. Using the patch-clamp technique, the mechanosensitive TREK2 channel was recorded in the presence of symmetrical 150 mM KCl solutions. In 253J cells, the TREK2 channel was activated by polyunsaturated fatty acids, intracellular acidosis at -60 mV and mechanical stretch at -40 mV or 40 mV. Furthermore, small interfering RNA (siRNA)-mediated TREK2 knockdown resulted in a slight depolarization from $-19.9mV{\pm}0.8$ (n=116) to $-8.5mV{\pm}1.4$ (n=74) and decreased proliferation of 253J cells, compared to negative control siRNA. 253J cells treated with TREK2 siRNA showed a significant increase in the expression of cell cycle boundary proteins p21 and p53 and also a remarkable decrease in protein expression of cyclins D1 and D3. Taken together, the TREK2 channel is present in bladder cancer cell lines and may, at least in part, contribute to cell cycle-dependent growth.

CRM1 inhibitor S109 suppresses cell proliferation and induces cell cycle arrest in renal cancer cells

  • Liu, Xuejiao;Chong, Yulong;Liu, Huize;Han, Yan;Niu, Mingshan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.161-168
    • /
    • 2016
  • Abnormal localization of tumor suppressor proteins is a common feature of renal cancer. Nuclear export of these tumor suppressor proteins is mediated by chromosome region maintenance-1 (CRM1). Here, we investigated the antitumor effects of a novel reversible inhibitor of CRM1 on renal cancer cells. We found that S109 inhibits the CRM1-mediated nuclear export of RanBP1 and reduces protein levels of CRM1. Furthermore, the inhibitory effects of S109 on CRM1 is reversible. Our data demonstrated that S109 significantly inhibits proliferation and colony formation of renal cancer cells. Cell cycle assay showed that S109 induced G1-phase arrest, followed by the reduction of Cyclin D1 and increased expression of p53 and p21. We also found that S109 induces nuclear accumulation of tumor suppressor proteins, Foxo1 and p27. Most importantly, mutation of CRM1 at Cys528 position abolished the effects of S109. Taken together, our results indicate that CRM1 is a therapeutic target in renal cancer and the novel reversible CRM1 inhibitor S109 can act as a promising candidate for renal cancer therapy.