• Title/Summary/Keyword: cancer cell proliferation

Search Result 1,864, Processing Time 0.024 seconds

Effects of Andrographitis Herba in A549 Lung Cancer Cells (천심련(穿心蓮)이 A549 폐암세포에 미치는 영향)

  • Bum, Hee-Byun;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.25 no.2
    • /
    • pp.107-116
    • /
    • 2010
  • Objectives : This study purposed to research the anti-cancer effects of Andrographitis Herba. Methods : By measuring the cell proliferation, apoptosis, morphology and cytokine level from the extracts, the influence on a A549 cell was compared. Results : The Andrographitis Herba decoction extract according to the concentration inhibited the proliferation and increased the apoptosis of the A549 cell. Among the various fraction extracts of the Andrographitis Herba decoction, EtOEt showed the greatest increase of the apoptosis of the A549 cell. The Andrographitis Herba decoction extract according to the concentration decreased the secretion of the TGF-$\beta$ in the A549 cell, and increased the secretion of the TNF-$\alpha$ and the IFN-$\gamma$ presenting cell population. Conclusion : It is considered that the total extract and various fraction extracts of Andrographitis Herba decoction inhibit the proliferation of A549 cells.

Tumor bioenergetics: An emerging avenue for cancer metabolism targeted therapy

  • Kee, Hyun Jung;Cheong, Jae-Ho
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2014
  • Cell proliferation is a delicately regulated process that couples growth signals and metabolic demands to produce daughter cells. Interestingly, the proliferation of tumor cells immensely depends on glycolysis, the Warburg effect, to ensure a sufficient amount of metabolic flux and bioenergetics for macromolecule synthesis and cell division. This unique metabolic derangement would provide an opportunity for developing cancer therapeutic strategy, particularly when other diverse anti-cancer treatments have been proved ineffective in achieving durable response, largely due to the emergence of resistance. Recent advances in deeper understanding of cancer metabolism usher in new horizons of the next generation strategy for cancer therapy. Here, we discuss the focused review of cancer energy metabolism, and the therapeutic exploitation of glycolysis and OXPHOS as a novel anti-cancer strategy, with particular emphasis on the promise of this approach, among other cancer metabolism targeted therapies that reveal unexpected complexity and context-dependent metabolic adaptability, complicating the development of effective strategies.

The Experimetal Effects of PalMulTang on Anti-Cancer and Immunologic Function (팔물탕(八物湯)이 항암(抗癌) 및 면역기능(免疫機能)에 미치는 실험적(實驗的) 효과(效果))

  • Park, Hae-Jun;Ko, Woo-Shin
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.327-338
    • /
    • 1998
  • To investigate effect of water extract of PaIMuITang(PMT) on human cancer cell-lines and immunocytes, this research estimated proliferation of A431 cell line, KHOS-NP cell line, mouse thymocytes and mouse splenocytes, Nitric Oxide(NO) from macrophage, apoptosis and subpopulation of the mouse thymocytes. The results were obtained as follows; 1. PMT inhibited the. proliferation of A431 cell line, but it is not significant. 2. PMT inhibited the proliferation of KHOS-NP cell line, but it is not significant. 3. PMT stimulated the proliferation of mouse thymocytes, being compared Con A non-treated group. 4. PMT stimulated the proliferation of mouse splenocytes, being compared LPS treated group. 5. PMT l00g/mQ inhibited the production of NO from macrophages in vitro, being compared NPS IFN treated group. 6. PMT inhibited the production of NO from macrophages in vivo, being compared LPS|IFN treated group. 7. PMT accelerated the induction of apoptosis of the mouse thymocytes. 8. In subpopulation PMT decreased $T_H$ of the mouse thymocytes, but increased T /dT s of the mouse thymocytes.

  • PDF

Suppression of MED19 expression by shRNA induces inhibition of cell proliferation and tumorigenesis in human prostate cancer cells

  • Cui, Xingang;Xu, Danfeng;Lv, Chao;Qu, Fajun;He, Jin;Chen, Ming;Liu, Yushan;Gao, Yi;Che, Jianping;Yao, Yacheng;Yu, Hongyu
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.547-552
    • /
    • 2011
  • MED19 is a member of the Mediator that plays a key role in the activation and repression of signal transduction or the regulation of transcription in carcinomas. To tested the functional role of MED19 in human prostate cancer, we downregulated MED19 expression in prostate cancer cells (PC-3 and DU145) by lentivirus-mediated short hairpin (shRNA), and analyzed the effect of inhibition of MED19 on prostate cancer cell proliferation and tumorigenesis. The in vitro prostate cancer cell proliferation, colony formation, and in vivo tumor growth in nude mice xenografts was significantly reduced after the downregulation of MED19. Knockdown of MED19 caused S-phase arrest and induced apoptosis via modulation of Bid and Caspase 7. It was suggested that MED19 serves as a novel proliferation regulator that promotes growth of prostate cancer cells.

Radiopharmaceuticals for Imaging of Cellular Proliferation (세포 증식 영상용 방사성의약품)

  • Oh, Seung-Jun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.4
    • /
    • pp.209-223
    • /
    • 2002
  • By considering the biological properties of a tumor, it should be possible to realize better results in cancer therapy. PET imaging offers the opportunity to measure tumor growth non-invasively and repeatedly as an early assessment of response to cancer therapy. Measuring cellular growth instead of energy metabolism showed offer significant advantages in evaluating therapy. Thymidine and its derivative nucleoside compounds can be changed to mono, di- and tri- phosphate compounds by thymidine kinase and then be incorporated into DNA. Their bindings are increased in highly proliferating cells due to the high DNA synthesis rate. To evaluate cell proliferation, many kinds of thymidine and uridine derivatives have been labeled with positron emitter and radioactive iodine. Compared to radiopharmaceuticals which have radioisotope labeled base ring such as pyirmidine, the radiopharmacuticals which have radioisotope labeled sugar ring are more stable in vivo and have metabolic resistance. The biological properties such as DNA incorporation ratios are highly dependent on their chemical structures and metabolic processes. This overview describes synthesis of radiopharmaceuticals and their biological properties for imaging of tumor cell proliferation.

Effect of Cyclin D2 on Cell Proliferation in T-47D Breast Cancer Cells (인체 유방암 세포에서 과다발현 시킨 Cyclin D2의 영향에 대한 연구)

  • 김현준;이근수;전상학;공구
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Three D-type cyelins (D1, D2, and D3) are expressed in G1 phase of the cell cyele and have been implicated in cell transformation and neoplasia in human and mouse. Cyclin D1 overexpression or amplification was described in various human cancers. However, there is controversy about the role of cyclin D2 in cell cyele progression and human carcinogenesis. Specially, loss of cyelin D2 is involved in a vital tumor suppressor function in normal breast tissue, and that its loss may be related to tumorigenesis. The author examined to effect over-expression of cyclin D2 on the cell proliferation, apoptosis, and cell cycle using cyclin D2 transfected stable T47D breast cancer cells to investigate whether cyclinD2 functions as a positive regulator or negative regulator in cell proliferation. Overexpression of cyclin D2 led to the suppression of cell growth in cyclin D2 transfected T47D in both in its expression level and a time dependent manner with up to 50% reduction of cell growth at 72 hours. Therefore, the authors performed the cell cycle phase analysis using the flow cytometry to investigate the effect of cyclin D2 on the cell cycle phase in cyclin D2 transfected stable T47D cells. The flow cytometry analysis revealed increased sub G0 phase in cyclin D2 transfeted cells up to 23% at 72 hours. To confirm these results induced by overexpression of cyclinD2, the apoptotic bodies were counted in control and cyclin D2 transfected T47 cells. There are markedly increases of apoptotic bodies in cyclin D2-transfected cells up to 18%. These results suggested that Cyclin D2 suppresses the cell proliferation in breast cancers cells via the induction of apotosis.

  • PDF

The Effects of Yunpyesan on Cell Proloferation, Apoptosis and Cell Cycle Progression of Human Lung Cancer A549 Cells (윤폐산에 의한 폐암세포 증식억제기전에 관한 연구)

  • Kang Yun-Keong;Park Dong Il;Lee Jun Hyuk;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.745-755
    • /
    • 2002
  • To examine the effects of Yunpyesan on the cell proliferation of A549 human lung carcinoma cell line, we performed various experiments such as dose-dependent effect of Yunpyesan on cell proliferation and viability, morphological changes, quantification of apoptotic cell death and alterations of apoptosis/cell cycle-regulatory gene products. Yunpyesan declined cell viability and proliferation in both a dose- and a time-dependent manner. The anti-proliferative effect by Yunpyesan treatment in A459 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Yunpyesan Induced apoptotic cell death in a time-dependent manner, which was associated with degradation of poly-(ADP-ribose) polymerase (PARP), an apoptotic target protein, without alterations of the balance between Bcl-2 and Bax expressions. DNA flow cytometric histograms showed that population of G1 phase of the cell cycle was increased by Yunpyesan treatment in a dose-dependent manner. Western blot analysis revealed that cyclin D1 and A were reduced by Yunpyesan treatment, whereas cyclin dependent kinase (Cdk) inhibitor p27 was markedly increased in a time-dependent fashion. The level of tumor suppressor p53 proteins was also increased by Yunpyesan treatment and its increase might be linked to increase of Cdk inhibitor p27. In addition, Mdm2, negative regulator of p53, was down-regulated by Yunpyesan treatment. Since the expression of retinoblastome protein (pRB), a key regulator of G1/S progression, was reduced by Yunpyesan treatment, we supposed that phosphorylation of pRB might be also blocked. The present results indicated that Yunpyesan-induced inhibition of lung cancer cell proliferation is associated with the induction of apoptosis and the blockage of G1/S progression.

Ginsenoside-Rh2 Inhibits Proliferation and Induces Apoptosis of Human Gastric Cancer SGC-7901 Side Population Cells

  • Qian, Jun;Li, Jing;Jia, Jian-Guang;Jin, Xin;Yu, Da-Jun;Guo, Chen-Xu;Xie, Bo;Qian, Li-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1817-1821
    • /
    • 2016
  • Objectives: To observed the effects of ginsenoside -Rh2 (GS-Rh2) on proliferation and apoptosis of side population (SP) human gastric cancer SGC-7901 cells. Materials and Methods: SGC-7901 SP and Non-SP cells were sorted by flow cytometry and assessed using the cck-8 method. Expression of apoptosis-related proteins Bax and Bcl-2 of SP before and after the intervention was determined by Western-blotting. Results: It was found that the proliferation of SP was significantly faster than that of NSP (P<0.05). In addition, GS-Rh2 inhibited proliferation of gastric cancer SP cells, induced cell cycle arrest and cell apoptosis, and changed the expression of BAX/Bcl-2 proteins in a time-dependent and concentration-dependent manner (P<0.05). Conclusions: With increase of GS-Rh2 dose, GS-Rh2 gradually inhibit the proliferation of SGC-7901 SP cells, which have high proliferation rate, through G1/G0 phase arrest, followed by apoptosis which involves the up-regulation of Bax and the down-regulation of Bcl-2.

Overexpression of RUNX3 Inhibits Malignant Behaviour of Eca109 Cells in Vitro and Vivo

  • Chen, Hua-Xia;Wang, Shuai;Wang, Zhou;Zhang, Zhi-Ping;Shi, Shan-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1531-1537
    • /
    • 2014
  • Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene whose reduced expression may play an important role in the development and progression of esophageal squamous cell cancer (ESCC). The aim of this study was to investigate the clinical relevance of RUNX3 in ESCC patients and effects of overexpression on biological behaviour of Eca109 cells in vitro and in vivo. Immunohistochemistry was performed to detect the clinical relevance of RUNX3 and lymph node metastasis in 80 ESCC tissues and 40 non-cancerous tissues using the SP method. RT-PCR and Western blotting were applied to assess the RUNX3 level and verify the Eca109 cell line with stable overexpression. Localization of RUNX3 proteins was performed by cell immunofluorescence. CCK-8 and Scrape motility assays were used to determine proliferation and migration and the TUNEL assay to analyze cell apoptosis. Invasive potential was assessed in cell transwell invasion experiments. In nude mice, tumorigenesis in vivo was determined. Results showed decreased expression of RUNX3 in esophageal tissue to be significantly related to lymph node metastasis (LNM) (P<0.01). In addition, construction of a recombinant lentiviral vector and transfection into the human ESCC cell line Eca109 demonstrated that overexpression could inhibit cell proliferation, migration and invasion, and induce apoptosis. The in vivo experiments in mice showed tumorigenicity and invasiveness to be significantly reduced. Taken together, our studies indicate that underexpression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells proliferation, migration, invasion and tumorigenesis.

20(S)-Protopanaxadiol Induces Human Breast Cancer MCF-7 Apoptosis through a Caspase-Mediated Pathway

  • Zhang, Hong;Xu, Hua-Li;Fu, Wen-Wen;Xin, Ying;Li, Mao-Wei;Wang, Shuai-Jun;Yu, Xiao-Feng;Sui, Da-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7919-7923
    • /
    • 2014
  • 20(S)-Protopanaxadiol (PPD), a ginsenoside isolated from Pananx quinquefolium L., has been shown to inhibit growth and proliferation in several cancer cell lines. The aim of this study was to evaluate its anticancer activity in human breast cancer cells. MCF-7 cells were incubated with different concentrations of 20(S)-PPD and cytotoxicity was evaluated by MTT assay. Occurrence of apoptosis was detected by DAPI and Annexin V-FITC/PI double staining. Mitochondrial membrane potential was measured with Rhodamine 123. The Bcl-2 and Bax expression were determined by Western blot analysis. Caspase activity was measured by colorimetric assay. 20(S)-PPD dose-dependently inhibited cell proliferation in MCF-7 cells, with an $IC_{50}$ value of $33.3{\mu}M$ at 24h. MCF-7 cells treated with 20(S)-PPD presented typical apoptosis, as observed by morphological analysis in cell stained with DAPI. The percentages of annexin V-FITC positive cells were 8.92%, 17.8%, 24.5% and 30.5% in MCF-7 cells treated with 0, 15, 30 and $60{\mu}M$ of 20(S)-PPD, respectively. Moreover, 20(S)-PPD could induce mitochondrial membrane potential loss, up-regulate Bax expression and down-regulate Bcl-2 expression. These events paralleled activation of caspase-9, -3 and PARP cleavage. Apoptosis induced by 20(S)-PPD was blocked by z-VAD-fmk, a pan-caspase inhibitor, suggesting induction of caspase-mediated apoptotic cell death. In conclusion, the 20(S)-PPD investigated is able to inhibit cell proliferation and to induce cancer cell death by a caspase-mediated apoptosis pathway.