• Title/Summary/Keyword: cancer cell lines

검색결과 1,747건 처리시간 0.033초

Tumour Suppressive Effects of WEE1 Gene Silencing in Breast Cancer Cells

  • Ghiasi, Naghmeh;Habibagahi, Mojtaba;Rosli, Rozita;Ghaderi, Abbas;Yusoff, Khatijah;Hosseini, Ahmad;Abdullah, Syahrilnizam;Jaberipour, Mansooreh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6605-6611
    • /
    • 2013
  • Background: WEE1 is a G2/M checkpoint regulator protein. Various studies have indicated that WEE1 could be a good target for cancer therapy. The main aim of this study was to asssess the tumor suppressive potential of WEE1 silencing in two different breast cancer cell lines, MCF7 which carries the wild-type p53 and MDA-MB468 which contains a mutant type. Materials and Methods: After WEE1 knockdown with specific shRNAs downstream effects on cell viability and cell cycle progression were determined using MTT and flow cytometry analyses, respectively. Real-time PCR and Western blotting were conducted to assess the effect of WEE1 inhibition on the expression of apoptotic (p53) and anti-apoptotic (Bcl2) factors and also a growth marker (VEGF). Results: The results showed that WEE1 inhibition could cause a significant decrease in the viability of both MCF7 and MDA-MB-468 breast cancer cell lines by more than 50%. Interestingly, DNA content assays showed a significant increase in apoptotic cells following WEE1 silencing. WEE1 inhibition also induced upregulation of the apoptotic marker, p53, in breast cancer cells. A significant decrease in the expression of VEGF and Bcl-2 was observed following WEE1 inhibition in both cell lines. Conclusions: In concordance with previous studies, our data showed that WEE1 inhibition could induce G2 arrest abrogation and consequent cell death in breast cancer cells. Moreover, in this study, the observed interactions between the pro- and anti-apoptotic proteins and decrease in the angiogenesis marker expression confirm the susceptibility to apoptosis and validate the tumor suppressive effect of WEE1 inhibition in breast cancer cells. Interestingly, the levels of the sensitivity to WEE1 silencing in breast cancer cells, MCF7 and MDA-MB468, seem to be in concordance with the level of p53 expression.

Anticancer Effects of Curcuma C20-Dialdehyde against Colon and Cervical Cancer Cell Lines

  • Chaithongyot, Supattra;Asgar, Ali;Senawong, Gulsiri;Yowapuy, Anongnat;Lattmann, Eric;Sattayasai, Nison;Senawong, Thanaset
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6513-6519
    • /
    • 2015
  • Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of $65.4{\pm}1.74{\mu}g/ml$, $58.4{\pm}5.20{\mu}g/ml$ and $72.0{\pm}0.03{\mu}g/ml$, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.

인체 유방암 세포에서 retinoids의 영향에 대한 연구 (Effect of Retinoids on Human Breast Cancer Cells)

  • 윤현정;신윤용;공구
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권2호
    • /
    • pp.51-66
    • /
    • 2004
  • Retinoids, better known as vitamin A, have been reported to inhibit the growth of several breast cancer cell lines in culture and to reduce breast tumor growth in animal models. Furthermore, retinoids can augment the action of other breast cancer cell growth inhibitors both in vitro and in vivo. Clinically, interest has increased in the potential use of retinoids for the prevention and treatment of human breast cancer. We have examine the effect of all-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) on human breast cancer cell(MCF-10A, T47-D, MCF-7) proliferation using MTT assay and cell cycle analysis(FACS). Overexpression of cyclin D1 protein is observed in the majority of breast cancers, suggesting that dysregulated expression of cyclin D1 might be a critical event in breast cancer carcinogenesis. We investigated whether tRA and 9-cis RA might affect expression of cyclin D1 on human breast cancer cells(MCF-10A, T47-D, MCF-7) using RT-PCR and west-ern bolt. In MCF-10A cells, either tRA or 9-cis RA treatment did not affect the cell proliferation. In T47-D cells and MCF-7 cells, either tRA or 9-cis RA treatment showed the inhibition of the cell proliferation over control cells and also inhibit the estrogen stimulated cell proliferation when it was given together with estrogen. The effect of retinoids was dose- and time- dependent. T47-D cells treated with 1.0 $\muM$ tRA undergo G0/G1-phase arrest by Day 5. MCF-7 cells treated with 1.0 $\muM$ tRA undergo S-phase arrest by Day 5. All-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) inhibited the cyelin D1 mRNA and protein expression levels of human MCF-7 and T47-D breast carcinoma cells in vitro. The data indicate that retinoids can reduce cyclin D1 expression levels in a variety of breast cell lines in vitro and result in inhibition of cell proliferation. tRA-mediated growth inhibition and cyclin D1 expression inhibition is more potent than 9-cis RA mediated that. tRA-mediated inhibition effect is more potent on T47-D cells than on MCF-7 cells. Our data suggest that retinoids activity is different according to property of cell lines. Future chemoprevention of breast cancer studies using retinoids will be necessary to determine the mechanism of the retinoids-mediated growth inhibition.

  • PDF

Apoptotic Potential and Chemical Composition of Jordanian Propolis Extract against Different Cancer Cell Lines

  • Abutaha, Nael
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.893-902
    • /
    • 2020
  • Propolis is a resinous substance that is collected by Apis mellifera from plant sources and is used in traditional medicine. To study the phytochemical constituents and apoptotic potential of Jordanian propolis extract against different cancer cell lines, propolis was extracted using methanol, hexane, and ethyl acetate and was fractionated using chromatographic methods. Cytotoxicity was assessed using MTT and LDH assays. The apoptotic potential was investigated using florescence microscopy, multicaspase assay, Annexin-V and dead cell assay, and cell cycle assay. The phytochemical constituents were analyzed using GC-MS. The methanol extract of propolis exhibited cytotoxic potential against all cell lines tested. The IC50 values of the methanol extract were 47.4, 77.8, 91.2, and 145.0 ㎍/ml for HepG2, LoVo, MDAMB231, and MCF7 cell lines, respectively. The IC50 values of the F1 fraction were 31.6 (MDAMB231), 38.9 (HepG2), 36.7 (LoVo) and 75.5 (MCF7) ㎍/ml. On further purification using thin-layer chromatography, the IC50 values of the F1-3 fraction were found to be 84.31(HepG2), 79.2 (MCF7), 70.4 (LoVo), and 68.9 (MDAMB231) ㎍/ml, respectively. The anticancer potential of the F1 fraction was confirmed through the induction of apoptosis and cell cycle arrest at the G0/G1 phase. The GC-MS analysis of the F1 fraction revealed the presence of 3-methyl-4-isopropylphenol (29.44%) as a major constituent. These findings indicate the potential of propolis extract as a cancer therapy. However, further investigation is required to assess the acute and subacute toxicity of the most active fraction.

사람 암세포주들에서 아미노산 수송체 LAT1 mRNA 발현과 아미노산 L - Leucine 수송의 상관관계 (Correlation Between the Expression of Amino Acid Transporter LAT1 mRNA and the Amount of L - Leucine Transport in Human Cancer Cell Lines)

  • 김도경;송수근;김인진;국중기
    • 한국식품영양과학회지
    • /
    • 제33권9호
    • /
    • pp.1451-1456
    • /
    • 2004
  • 사람의 여러 암세포주들에서 아미노산 수송체 LAT1 및 그 보조인자 4F2hc mRNA의 발현과 LAT1의 대표적 기질인 L-leucine 수송을 조사하여 이들 사이의 상관관계를 밝히기 위해, 암세포주들에서 northern blot analysis 및 uptake 실험 등을 시행하여 다음과 같은 결과를 얻었다. 조사한 26 종류의 사람 암 유래 세포주들에서 LAT1 mRNA의 뚜렷한 발현을 확인할 수 있었으나 그 발현양에는 차이가 있었다. 조사한 26종류의 사람 암 유래 세포주들에서 4F2hc mRNA의 뚜렷한 발현을 확인할 수 있었으며, LAT1의 경우에서와 같이 발현하는 정도가 조금씩 다름을 확인할 수 있었다. 사람의 암 유래 세포주들에서 아미노산 transporter에 의한 L-[$^{14}C$]leucine 수송을 확인할 수 있었다. 사람의 암세포주들에서 LAT1 mRNA의 발현정도가 높을수록 L-[$^{14}C$]leucine의 수송능력이 증가함을 알 수 있었다. 사람의 암세포주들에서 4F2hc mRNA의 발현정도가 높을수록 L-[$^{14}C$]leucine 수송 능력이 증가하는 경향은 보였으나, 통계적인 유의성은 없었다. 본 연구의 결과에 의해 사람 암세포주들에서 아미노산 transporter LAT1의 발현과 아미노산 L-leucine의 수송 사이와의 상관관계를 확인할 수 있었으며, 아미노산 transporter LAT1의 특이적 억제에 의한 암세포의 성장 억제에 관한 또 하나의 방향성을 제시할 수 있을 것으로 사료된다.

Celecoxib, a COX-2 Selective Inhibitor, Induces Cell Cycle Arrest at the G2/M Phase in HeLa Cervical Cancer Cells

  • Setiawati, Agustina
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1655-1659
    • /
    • 2016
  • Celecoxib, a selective inhibitor of COX-2, showed cytotoxic effects in many cancer cell lines including cervical cancer cells. This study investigated the effect of celecoxib on cell cycle arrest in HeLa cervical cancer cells through p53 expression. In vitro anticancer activity was determined with the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method. A double staining method was applied to investigate the mechanism of cell death, cell cycling was analyzed by flow cytometryand immunocytochemistry was employed to stain p53 expression in cells. Celecoxib showed strong cytotoxic effects and induced apoptosis with an $IC_{50}$ value of $40{\mu}M$. It induced cell cycle arrest at G2/M phase by increasing level of p53 expression on HeLa cells.

Induction of cell cycle arrest and apoptosis by an indirubin analog, a CDK inhibitor, in human lung cancer cells

  • Lee, Jong-Won;Moon, Myung-Ju;Kim, Yong-Chul;Lee, Sang-Kook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.91.2-91.2
    • /
    • 2003
  • Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation. Inhibition of CDK is a promising target in development of anti-cancer agents. An indirubin analog (AGM01l), a CDK inhibitor, is a synthetic compound that inhibits human cancer cell growth in vitro. AGM01l showed a potent cytotoxicity in cultured human cancer cell lines (IC$\sub$50/ = 5.43 ${\mu}$M for A549, human colon cancer cell; IC$\sub$50/ = 1.21 ${\mu}$M for SNU-638, human stomach cancer cell; IC$\sub$50/ 9.23 ${\mu}$M for HL-60, human leukemia cell). (omitted)

  • PDF

Comparison of Metabolic Profiles of Normal and Cancer Cells in Response to Cytotoxic Agents

  • Lee, Sujin;Kang, Sunmi;Park, Sunghyouk
    • 한국자기공명학회논문지
    • /
    • 제21권1호
    • /
    • pp.31-43
    • /
    • 2017
  • Together with radiotherapy, chemotherapy using cytotoxic agents is one of the most common therapies in cancer. Metabolic changes in cancer cells are drawing much attention recently, but the metabolic alterations by anticancer agents have not been much studied. Here, we investigated the effects of commonly used cytotoxic agents on lung normal cell MRC5 and lung cancer cell A549. We employed cis-plastin, doxorubicin, and 5-Fluorouracil and compared their effects on the viability and metabolism of the normal and cancer cell lines. We first established the concentration of the cytotoxic reagents that give differences in the viabilities of normal and cancer cell lines. In those conditions, the viability of A549 decreased significantly, whereas that of MRC5 remained unchanged. To study the metabolic alterations implicated in the viability differences, we obtained the metabolic profiles using $^1H$-NMR spectrometry. The $^1H$-NMR data showed that the metabolic changes of A549 cells are more remarkable than that of MRC5 cells and the effect of 5-FU on the A549 cells is the most distinct compared to other treatments. Heat map analysis showed that metabolic alterations under treatment of cytotoxic agents are totally different between normal and cancer cells. Multivariate analysis and weighted correlation network analysis (WGCNA) revealed a distinctive metabolite signature and hub metabolites. Two different analysis tools revealed that the changes of cell metabolism in response to cytotoxic agents were highly correlated with the Warburg effect and Reductive lipogenesis, two pathways having important effects on the cell survival. Taken together, our study addressed the correlation between the viability and metabolic profiles of MRC5 and A549 cells upon the treatment of cytotoxic anticancer agents.

구강암 연구를 위한 동물실험모델의 개발(I) (MAKING IN VIVO MODEL TO STUDY ABOUT HUMAN ORAL CANCER (I))

  • 박형국;김용각
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제19권3호
    • /
    • pp.300-310
    • /
    • 1997
  • 편평상피세포암종은 악성종양 중 가장 중요한 비중을 차지하고 있는 암종이다. 하지만 편평상피세포암종의 세포주는 다른 악성종양에 비하여 아직까지 많이 개발되어지지 않았다. 또한 동물실험모델을 만들기 위한 이종이식에 있어서 편평상피세포암종은 매우 낮은 생착율을 보이고 있다. 구강암 중에서도 편평상피세포암종은 가장 많은 부분을 차지하나, 개발된 세포주는 그리 많지 않으며, 더 더욱이 동물실험 모델의 제작은 쉽지 않아, 새로운 치료 약제의 개발이나 치료 방법 개발 등에 많은 제약이 있어왔다. 본 실험에서는 수종의 구강 편평상피세포암종의 세포주를 배양하였고, 특별히 고안된 사육시설을 이용하여 BALB/C nude mice를 사육하였다. 여러 농도의 구강암 세포주를 nude mice의 등에 피하로 이식하였다. 어떤 세포주는 계속적인 성장을 보였으나 어떤 세포주는 완전히 흡수되기도 하였다. 5주 이상을 관찰하였으며, 이식된 종양의 크기를 측정하고, 부피를 계산하였다. 또한 또 다른 동물모델의 제작 방법으로서 특별히 고안된 cap을 nude mice의 등에 이식하고, 그 안에 구강암 세포주를 배지와 함께 이식하였으며, 1주 후에 cap을 제거하였고, 4주 이상을 관찰하였으며, 성장하는 종양의 모습과 크기를 관찰하였다. 본 연구는 구강암 연구에 적절한 동물실험모델을 개발하여 다른 악성종양에 비해 동물실험적으로 연구할 기회가 적었던 구강암 영역의 연구를 활발히 하며, 향후 한국인의 구강암연구에 가장 적절한 동물실험모델을 개발하여, 보다 진보된 구강암 치료방법의 개발 및 신약 등의 개발에 이용하기 위함이다.

  • PDF

Cadmium Induces Cell Cycle Arrest and Change in Expression of Cell Cycle Related Proteins in Breast Cancer Cell Lines

  • Lee Young Joo;Kang Tae Seok;Kim Tae Sung;Moon Hyun Ju;Kang Il Hyun;Oh Ji Young;Kwon Hoonjeong;Han Soon Young
    • Toxicological Research
    • /
    • 제21권1호
    • /
    • pp.77-85
    • /
    • 2005
  • Cadmium is an environmental pollutant exposed from contaminated foods or cigarette smoking and known to cause oxidative damage in organs. We investigated the cadmium-induced apoptosis and cell arrest in human breast cancer cells, MCF-7 cells and MDA-MB-231 cells. Obvious apoptotic cell death was shown in CdCl₂ 100 μM treatment for 12 hr, which were determined by DAPI staining and flow cytometric analysis. In cell cycle analysis, MCF-7 cells and MDA-MB-231 cells were arrested in S phase and G2/M phase respectively. These could be explained by the induction of cell cycle inhibitory protein, p21/sup Waf1/Cip1/ and p27/sup Kip1/, expression and reduction of cyclin/Cdk complexes in both cell lines. The decreased expression of cyclin A and Cdk2 in MCF-7 cells and cyclin B1 and Cdc2 in MDA-MB-231 cells were consistent with the flow cytometric observation. p-ERK expression was increased dose-dependent manner in both cell lines. It suggests that ERK MAPK pathway are involved in cadmium-induced cell cycle arrest and apoptosis. Moreover, cotreatment of zinc (100 μM, 12 hr) recovered the cadmium-induced cell arrest in both cells, which shows cadmium-induced oxidative stress mediates apoptosis and cell cycle arrest in human breast cancer cells.