• 제목/요약/키워드: cancer cell growth inhibition

검색결과 817건 처리시간 0.026초

감초로 배양한 표고버섯 균사체 추출물이 항암 효과 및 알레르기 억제 효과 검증 (Anti-Cancer and Anti-Allergy Activities of Mycelia Extracts of Lentinus edodes Mushroom-Cultured Glycyrrhiza radix)

  • 배만종;이성태;예은주
    • 동아시아식생활학회지
    • /
    • 제17권1호
    • /
    • pp.43-50
    • /
    • 2007
  • This study investigated the effects of mycelia of Lentinus edodes mushroom-cultured Glycyrrihiza radix(LMG) on cancer cell lines and sarcoma 180(S-180), as well as on human mast cells. In an anti-cancer tests using Hep3B(hepatic cancer cell), MCF-7(breast cancer), and HeLa(uterine cancer) cells, LMG extract exhibited greater anti-proliferation effects than Glycyrrihiza glabra(GG) extract. LMG extract multiplication restraining effects were 60% that of ethanol at 3 mg/mL extract also displayed tumor suppressive effects in mice injected with S-180 cells. The growth-inhibition rates against tumor cells were 56% for LMG and 37% for GG. When LMG was added to human mast cells, the Intensity of RT-PCR products using primers($FC{\varepsilon}RI\;c-kit$) decreased. significantly compared with that of control. These results suggest that Lentinus edodes Mushroom-Cultured Glycyrrhiza glabra has an anti-proliferation effects against cancer cell lines(Hep3B, MCF-7 and HeLa) and S-180 tumors and will be also beneficial in treating allergic reactions.

  • PDF

Synergistic Effect of Natural Killer Cells and Bee Venom on Inhibition of NCI-H157 Cell Growth

  • Sung, Hee Jin;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제33권1호
    • /
    • pp.47-56
    • /
    • 2016
  • Objectives : This study examined the effects of Bee venom on apoptosis in NCI-H157 human lung cancer cells and for promoting the apoptosis effects of Natural killer cell. Methods : Bee venom and Natural killer-92 cells were cultured either separately from or together with NCI-H157 cells for 24 hours. To figure out whether Bee venom enhances the cytotoxic effect of Natural Killer-92 cells, a cell viability assay was conducted. To observe the changes in Death receptors, apoptotic regulatory proteins and Nuclear $Factor-{\kappa}B$, western blot analysis was conducted. To observe the effect of Bee venom through an extrinsic mechanism, a transfection assay was conducted. Results : 1. Natural killer-92 cells and Bee venom significantly inhibited the growth of NCI-H157 cells and co-culture had more inhibitory effect than the separate culture. 2. Expressions of Fas, DR3, DR6, Bax, caspase-3, caspase-8, cleaved caspase-3, cleaved caspase-8 were increased, and expressions of Bcl-2 and cIAP were decreased. More efficacy was observed in co-culture than in separate culture. 3. Nuclear $Factor-{\kappa}B$ activation was clearly decreased. And co-culture showed much less activation than separate culture. 4. As a result of treatment for DR-siRNA, the reduced cell viability of NCI-H157 cells and the activity of Nuclear $Factor-{\kappa}B$ were increased. With this, it can be seen that Bee venom and Natural killer-92 cells have an effect on the cancer cells through the extrinsic mechanism. Conclusion : Bee venom is effective in inhibiting the growth of human lung cancer cells. Furthermore Bee venom effectively enhances the functions of Natural killer cells.

Growth Inhibition of Human Head and Neck Squamous Cell Carcinomas by Angelica decursiva Extracts

  • Shin, Woo-Cheol;Kim, Chun-Sung;Kim, Heung-Joong;Lee, Myoung-Hwa;Kim, Hye-Ryun;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • 제35권4호
    • /
    • pp.153-158
    • /
    • 2010
  • Angelica decursiva has been used in Korean traditional medicine as an antitussive, an analgesic, an antipyretic and a cough remedy. However, the anti-cancer properties of Angelica decursiva have not yet been well defined. In our current study the cytotoxic activity of ethanol extracts of Angelica decursiva root (EEAD) and the mechanism of cell death exhibited by EEAD were examined in FaDu human head and neck squamous cell carcinoma cells. The cytotoxic effects of EEAD upon the growth of FaDu cells were examined with an MTT assay. In addition, the mechanism of cell death induced by EEAD was evaluated by DNA fragmentation analysis, immunoblotting and caspase activation measurements. EEAD induced apoptotic cell death in FaDu cells in a concentration- and time-dependent manner, as determined by MTT assay and DNA fragmentation analysis. Furthermore, the proteolytic processing of caspase-3, -7 and -9 was increased by EEAD treatment of FaDu cells. In addition, the activation of caspase-3 and -7 was detected in living FaDu cells by fluorescence microscopy. These results suggest that EEAD can induce apoptosis and suppress cell growth in cancer cells and may have utility as a future anticancer therapy.

Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian carcinoma and endometrial carcinoma cells via the involvement of a reactive oxygen species-independent mitochondrial pathway

  • Jo, Hantae;Oh, Jeong-Hyun;Park, Dong-Wook;Lee, Changho;Min, Churl K.
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.96-104
    • /
    • 2020
  • Objectives: Oleanolic acid, a minor element of ginsenosides, and its derivatives have been shown to have cytotoxicity against some tumor cells. The impact of cytotoxic effect of oleanolic acid 3-acetate on ovarian cancer SKOV3 cells and endometrial cancer HEC-1A cells were examined both in vivo and in vitro to explore the underlying mechanisms. Methods: Cytotoxic effects of oleanolic acid 3-acetate were assessed by cell viability, phosphatidylserine exposure on the cell surface, mitochondrial release of cytochrome C, nuclear translocation of apoptosis-inducing factor, depolarization of mitochondrial transmembrane potential (∆Ψm), and generation of reactive oxygen species (ROS). In vivo inhibition of tumor growth was also assessed with xenografts in immunocompromised mice. Results: Oleanolic acid 3-acetate exhibited potent cytotoxicity toward SKOV3 and HEC-1A cells by decreasing cell viability in a concentration-dependent manner. Importantly, oleanolic acid 3-acetate effectively suppressed the growth of SKOV3 cell tumor xenografts in immunocompromised mice. Furthermore, oleanolic acid 3-acetate induced apoptotic cell death as revealed by loss of ∆Ψm, release of cytochrome c, and nuclear translocation of apoptosis-inducing factor with a concomitant activation of many proapoptotic cellular components including poly(ADP-ribose) polymerase, Bcl-2, and caspases-8, caspase-3, and caspase-7. Oleanolic acid 3-acetate, however, caused a decrease in ROS production, suggesting the involvement of an ROS-independent pathway in oleanolic acid 3-acetate-induced apoptosis in SKOV3 and HEC-1A cells. Conclusion: These findings support the notion that oleanolic acid 3-acetate could be used as a potent anticancer supplementary agent against ovarian and endometrial cancer. Oleanolic acid 3-acetate exerts its proapoptotic effects through a rather unique molecular mechanism that involves an unconventional ROS-independent but mitochondria-mediated pathway.

삼백초 추출물의 자궁경부암세포 억제 효능 (The Efficacy of Saururus chinensis on Cervical Cancer Cells : The Inhibitory Effect on the Function of E6 and E7 Oncogenes of HPV Type 16)

  • 정연구;이해숙;이경애;정옥;오원근;김광동;임종석;문자영;조용권;박순희;윤도영
    • 약학회지
    • /
    • 제46권6호
    • /
    • pp.426-432
    • /
    • 2002
  • Cervical cancer is one of the leading causes of female death from cancer worldwide with about 500,000 deaths per year. A strong association between certain human papilloma viruses (HPV type 16 and 18) and cervical cancer has been well known. An extract of Saururus chinensis, named as PE-46, has been used to investigate whether this agent has the ability of inhibiting the oncogenes E6 and E7 of HPV type 16. PE-46 inhibited the proliferation of human cervical cancer cell lines in a dose response manner. PE-46 also inhibited the in vitro binding of E6 and E6AP which are essential for the binding and degradation of the tumor suppressor p53. In addition, PE-46 inhibited the in vitro binding of E7 and Rb which is essential tumor suppressor for the control of cell cycle. The levels of mRNA for E6 and E7 were also decreased by PE-46. SiHa cells treated with PE-46 induced G0/G1 arrest, resulting in inhibition of growth. Our study showed that the PE-46 can inhibit the cervical carcinomas via both inhibition of bindings between oncogenes and tumor suppressors, and inhibition of G1longrightarrowS transition. PE-46 inhibited the oncogenecity of E6 and E7 of HPV 16 type, thus could be used as a putative modulating agent for the treatment of cervical carcinomas caused by HPV.

Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition

  • Wang, Yi-Xin;Cai, Hong;Jiang, Gang;Zhou, Tian-Bao;Wu, Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6791-6798
    • /
    • 2014
  • Background: To investigate the effect of silibinin on proliferation and apoptosis in human gastric cancer cell line MGC803 and its possible mechanisms. Materials and Methods: Human gastric cancer cell line MGC803 cells were treated with various concentration of silibinin. Cellular viability was assessed by CCK-8 assay andapoptosis and cell cycle distribution by flow cytometry. Protein expression and mRNA of STAT3, and cell cycle and apoptosis regulated genes were detected by Western blotting and real-time polymerase chain reaction, respectively. Results: Silibinin inhibits growth of MGC803 cells in a dose- and time-dependent manner. Silibinin effectively induces apoptosis of MGC803 cells and arrests MGC803 cells in the G2/M phase of the cell cycle, while decreasing the protein expression of p-STAT3, and of STAT3 downstream target genes including Mcl-1, Bcl-xL, survivin at both protein and mRNA levels. In addition, silibinin caused an increase in caspase 3 and caspase 9 protein as well as mRNA levels. Silibinin caused G2/M phage arrest accompanied by a decrease in CDK1 and Cyclin B1 at protein and mRNA levels.. Conclusions: These results suggest that silibinin inhibits the proliferation of MGC803 cells, and it induces apoptosis and causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9, potentially via the STAT3 pathway.

Bee Venom Enhanced Cytotoxic Effect of Natural Killer Cells on Human Lung Cancer Through Inducing Extrinsic Apoptosis

  • Kim, Jung Hyun;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제31권1호
    • /
    • pp.111-119
    • /
    • 2014
  • Objectives : I investigated whether Bee Venom can synergistically strengthen the cytotoxic effects of NK-92 cells, enhancing the inhibition of the growth of Lung Cancer Cells including A549 and NCI-H460 through induction of death receptor dependent extrinsic apoptosis and NO generation in the Nitro-oxide pathway. Methods : Bee Venom inhibited cell proliferation of A549 or NCI-H460 Human Lung Cancer Cells as well as NK-92 Cells. Moreover, when they were co-punctured with NK cells and concomitantly treated by 3 ${\mu}g/ml$ of Bee Venom, more influence was exerted on inhibition of proliferation of A549 or NCI-H460 Human Lung Cancer Cells than BV or NK cell co-culture alone. Results : The expression of Fas, TNFR2, DR3, DR6 in A549 Lung Cancer Cells was significantly increased by co-culture of NK-92 cells and treatment of 3 ${\mu}g/ml$ of Bee Venom, compared to co-culture of NK-92 cells alone, whereas the expression of Fas, TNFR2, DR6 in NCI-H460 Lung Cancer Cells was significantly increased by co-culture of NK-92 cells, representing no synergistic effects in the co-culture of NK-92 cell and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom. Coincidently, caspase-8, a expression of pro-apoptotic proteins in the extrinsic apoptosis pathway demonstrated same results as the above. Meanwhile, In NO generation, there is little change of NO generation in co-culture of NK-92 cells with A549 cells as well as the co-culture of NK-92 cell with them and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom, whereas increase of NO generation was shown in co-culture of NK-92 cells with NCI-H460 cells as well as the co-culture of NK-92 cell with them and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom, although synergistic effects by Bee Venom was not found. Conclusions : These present data provide that Bee Venom could be useful candidate compounds to enhance lung cancer growth inhibiting ability of NK-92 cells through DR expression and the related apoptosis.

아이스플랜트의 항산화 및 HCT116 인체 유래 대장암세포 성장억제 활성 (Antioxidant and growth inhibitory activities of Mesembryanthemum crystallinum L. in HCT116 human colon cancer cells)

  • 서진아;주지형
    • Journal of Nutrition and Health
    • /
    • 제52권2호
    • /
    • pp.157-167
    • /
    • 2019
  • 본 연구에서는 ice plant의 ethanol 추출물과 분획물의 항산화 및 대장암세포 성장억제 활성을 in vitro 수준에서 평가하는 것을 목적으로 하였다. Ethanol 추출물의 총 폴리페놀 함량 (3.7 mg GAE/g), 총 카로티노이드 함량 ($13.2{\mu}g/g$), DPPH 라디칼 소거활성 (21.0%), 철 환원력 (21.0%)보다 butanol 분획물의 총 폴리페놀 함량 (5.4 mg GAE/g), 총 카로티노이드 함량 ($86.6{\mu}g/g$), DPPH 라디칼 소거활성 (34.9%), 철 환원력 (80.8%)이 더 높았다. 또한 HCT116 대장암세포에서 세포 내 활성산소종 수준을 감소시키거나 세포 성장을 억제하는데 있어서 ethanol 추출물보다 butanol 분획물의 활성이 더 컸다. 대장암세포의 성장을 억제하는데 있어서 butanol 분획물이 ethanol 추출물보다 더 효과적이었던 것은 butanol 분획물의 apoptosis 유도활성이 ethanol 추출물의 활성보다 더 컸고 butanol 분획물만이 G2/M기억류활성을 나타냈기 때문인 것으로 생각된다. 앞으로 이와 같은 결과를 초래하는 주요 활성성분을 분리 동정하고 ice plant의 항산화 활성 및 대장암세포 성장억제 효과가 in vivo 수준에서 재현되는지 검증하며 이와 관련된 세부기전을 탐색하는 심도 있는 연구가 필요할 것으로 생각된다.

융복합적인 웰리스를 위한 야채수프의 인간 암세포 증식 억제효과 (Antiproliferative Activity of Vegetable Soup in Human Cancer cells for Wellness Convergence)

  • 심재근;이재혁;박정숙
    • 디지털융복합연구
    • /
    • 제13권8호
    • /
    • pp.543-548
    • /
    • 2015
  • 본 논문은 야채수프의 인간 암세포 증식 억제효과를 살펴보는 데 목적이 있다. 본 연구는 일반적으로 사용되는 야채수프 (VS)와 브로콜리가 들어간 야채수프 (VSB), 토마토가 들어간 야채스프 (VST)를 이용하여 암세포 증식 억제효과를 살펴보았다. 인간 암세포주는 위암 (AGS)세포주, 급성 전골수성 백혈병 (HL-60)세포주, 폐암 (A549) 세포주를 사용하였으며 MTS방법으로 암세포 증식 억제를 확인하였다. 위암 세포주는 VSB, VST에서 암세포 증식 억제효과가 있었으며 VS에 비해 유의성이 있었다. 급성 전골수성 백혈병 세포주는 VST에서 유의성 있는 억제를 보였으며 폐암 세포주는 VSB에서 VS보다 탁월한 효과를 보였다. 혼합 야채스프는 기능성 소재로 활용과 융복합적인 웰리스를 위한 기초 자료로 활용이 가능하다고 사료된다.

In Vitro Evaluation of Anti-cancer Properties of Hongyoung on SNU-80 Anaplastic Thyroid Carcinoma Cell Line

  • Gaeun Kim;Eun-Jung Kim
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.321-329
    • /
    • 2023
  • Anaplastic thyroid cancer has the highest mortality rate of all thyroid cancers and shows low responsiveness to most treatments. Hongyoung, a reddish-colored potato, is an excellent source of dietary polyphenol containing a large amount of anthocyanins, which has anti-cancer and anti-inflammatory effects. This study investigated the effects of Hongyoung extract on apoptosis and invasiveness in SNU-80 anaplastic thyroid cancer cells. The quantification of the total polyphenol content was done by spectrophotometric measurement. Cell growth was measured by using 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl) 2H tetrazolium, monosodium salt (MTS) assay. Cell cycle was analyzed through FACS analysis. Induction of apoptosis in cells was investigated by annexin V staining using flow cytometer and the expression of caspase-3 and Poly (ADP-ribose) polymerase (PARP) through western blot. mRNA expression and protein activation of matrix metalloproteinases (MMP)-2/-9 were examined by RT-PCR and zymography. As a result, the TPC of Hongyoung was 292.43±8.42 mg gallic acid equivalent (GAE)/100 g dry extract. Hongyoung showed a dose-dependent cell growth inhibition, and the IC50 values was 1,000 ㎍/mL. sub-G1 phase was more than doubled compared to the control group, and S and G2/M phase arrest were also induced. Hongyoung induced apoptosis by increasing FITC-Annexin V-positive cells and increased the activation of caspase-3 (cleaved caspase-3) and PARP (fragmented PARP). Hongyoung significantly inhibited mRNA expression and protein activation of MMP-2/-9 in phorbol 12-myristate 13-acetate (PMA)-treated SNU-80 cells. Therefore, this study suggests the possibility of development of Hongyoung extract as an anti-cancer agent.