• Title/Summary/Keyword: cancellative

Search Result 13, Processing Time 0.02 seconds

ON HOPF ALGEBRAS IN ENTROPIC JÓNSSON-TARSKI VARIETIES

  • ROMANOWSKA, ANNA B.;SMITH, JONATHAN D.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1587-1606
    • /
    • 2015
  • Comonoid, bi-algebra, and Hopf algebra structures are studied within the universal-algebraic context of entropic varieties. Attention focuses on the behavior of setlike and primitive elements. It is shown that entropic $J{\acute{o}}nsson$-Tarski varieties provide a natural universal-algebraic setting for primitive elements and group quantum couples (generalizations of the group quantum double). Here, the set of primitive elements of a Hopf algebra forms a Lie algebra, and the tensor algebra on any algebra is a bi-algebra. If the tensor algebra is a Hopf algebra, then the underlying $J{\acute{o}}nsson$-Tarski monoid of the generating algebra is cancellative. The problem of determining when the $J{\acute{o}}nsson$-Tarski monoid forms a group is open.

ON t-ALMOST DEDEKIND GRADED DOMAINS

  • Chang, Gyu Whan;Oh, Dong Yeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1969-1980
    • /
    • 2017
  • Let ${\Gamma}$ be a nonzero torsionless commutative cancellative monoid with quotient group ${\langle}{\Gamma}{\rangle}$, $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be a graded integral domain graded by ${\Gamma}$ such that $R_{{\alpha}}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma},H$ be the set of nonzero homogeneous elements of R, C(f) be the ideal of R generated by the homogeneous components of $f{\in}R$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. In this paper, we introduce the notion of graded t-almost Dedekind domains. We then show that R is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain and RH is a t-almost Dedekind domains. We also show that if $R=D[{\Gamma}]$ is the monoid domain of ${\Gamma}$ over an integral domain D, then R is a graded t-almost Dedekind domain if and only if D and ${\Gamma}$ are t-almost Dedekind, if and only if $R_{N(H)}$ is an almost Dedekind domain. In particular, if ${\langle}{\Gamma}{\rangle}$ isatisfies the ascending chain condition on its cyclic subgroups, then $R=D[{\Gamma}]$ is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain.

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.