• Title/Summary/Keyword: cancelable fingerprint template

Search Result 5, Processing Time 0.024 seconds

An Improved Cancelable Fingerprint Template Encryption System Research

  • Wang, Feng;Han, Bo;Niu, Lei;Wang, Ya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2237-2253
    • /
    • 2017
  • For the existing security problem based on Fuzzy Vault algorithm, we propose a cancelable fingerprint template encryption scheme in this paper. The main idea is to firstly construct an irreversible transformation function, and then apply the function to transform the original template and template information is stored after conversion. Experimental results show it effectively prevents the attack from fingerprint template data and improves security of the system by using minutiae descriptor to encrypt abscissa of the vault. The experiment uses public FVC2004 fingerprint database to test, result shows that although the recognition rate of the proposed algorithm is slightly lower than the original program, but the improved algorithm security and complexity are better, and therefore the proposed algorithm is feasible in general.

Dictionary Attack on Functional Transform-Based Cancelable Fingerprint Templates

  • Shin, Sang-Wook;Lee, Mun-Kyu;Moon, Dae-Sung;Moon, Ki-Young
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.628-630
    • /
    • 2009
  • Recently, Ratha and others proposed a cancelable biometrics scheme which transforms an original fingerprint template into a new one using a noninvertible transformation. However, we show that the original template is recovered by a dictionary attack if two transformed templates originating from it are revealed. In our attack, we simulate the transformation and construct a set of possible pre-images for each transformed template. Then, we find the correct pre-image by computing the intersection of these sets. We present an algorithm implementing this idea as well as successful experimental results.

The Biometric Authentication Scheme Capable of Multilevel Security Control (보안레벨 조절이 가능한 바이오메트릭 인증 기법)

  • Yun, Sunghyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2017
  • A fingerprint is unique to each person and can be represented as a digital form. As the fingerprint is the part of human body, fingerprint recognition is much more easy to use and secure rather than using password or resident card for user authentication. In addition, as the newly released smart phones have built-in camera and fingerprint sensors, the demand for biometric authentication is increasing rapidly. But, the drawback is that the fingerprint can be counterfeited easily and if it's exposed to the hacker, it cannot be reused. Thus, the original fingerprint template should be transformed for registration and authentication purposes. Existing transformation functions use passcode to transform the original template to the cancelable form. Additional module is needed to input the passcode, so it requires more cost and lowers the usability. In this paper, we propose biometric authentication scheme that is economic and easy to use. The proposed scheme is consisted of cancelable biometric template creation, registration and user authentication protocols, and can control several security levels by configuring the number of fingerprints and scan times. We also analyzed that our scheme is secure against the brute-force attack and the active attacks.

Fingerprint Template Protection Using One-Time Fuzzy Vault

  • Choi, Woo-Yong;Chung, Yong-Wha;Park, Jin-Won;Hong, Do-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2221-2234
    • /
    • 2011
  • The fuzzy vault scheme has emerged as a promising solution to user privacy and fingerprint template security problems. Recently, however, the fuzzy vault scheme has been shown to be susceptible to a correlation attack. This paper proposes a novel scheme for one-time templates for fingerprint authentication based on the fuzzy vault scheme. As in one-time passwords, the suggested method changes templates after each completion of authentication, and thus the compromised templates cannot be reused. Furthermore, a huge number of chaff minutiae can be added by expanding the size of the fingerprint image. Therefore, the proposed method can protect a user's fingerprint minutiae against the correlation attack. In our experiments, the proposed approach can improve the security level of a typical approach against brute-force attack by the factor of $10^{34}$.

Cancelable Iris Templates Using Index-of-Max Hashing (Index-of-Max 해싱을 이용한 폐기가능한 홍채 템플릿)

  • Kim, Jina;Jeong, Jae Yeol;Kim, Kee Sung;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.565-577
    • /
    • 2019
  • In recent years, biometric authentication has been used for various applications. Since biometric features are unchangeable and cannot be revoked unlike other personal information, there is increasing concern about leakage of biometric information. Recently, Jin et al. proposed a new cancelable biometric scheme, called "Index-of-Max" (IoM) to protect fingerprint template. The authors presented two realizations, namely, Gaussian random projection-based and uniformly random permutation-based hashing schemes. They also showed that their schemes can provide high accuracy, guarantee the security against recently presented privacy attacks, and satisfy some criteria of cancelable biometrics. However, the authors did not provide experimental results for other biometric features (e.g. finger-vein, iris). In this paper, we present the results of applying Jin et al.'s scheme to iris data. To do this, we propose a new method for processing iris data into a suitable form applicable to the Jin et al.'s scheme. Our experimental results show that it can guarantee favorable accuracy performance compared to the previous schemes. We also show that our scheme satisfies cancelable biometrics criteria and robustness to security and privacy attacks demonstrated in the Jin et al.'s work.