• Title/Summary/Keyword: canberra

Search Result 40, Processing Time 0.021 seconds

Performance testing of a FastScan whole body counter using an artificial neural network

  • Cho, Moonhyung;Weon, Yuho;Jung, Taekmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3043-3050
    • /
    • 2022
  • In Korea, all nuclear power plants (NPPs) participate in annual performance tests including in vivo measurements using the FastScan, a stand type whole body counter (WBC), manufactured by Canberra. In 2018, all Korean NPPs satisfied the testing criterion, the root mean square error (RMSE) ≤ 0.25, for the whole body configuration, but three NPPs which participated in an additional lung configuration test in the fission and activation product category did not meet the criterion. Due to the low resolution of the FastScan NaI(Tl) detectors, the conventional peak analysis (PA) method of the FastScan did not show sufficient performance to meet the criterion in the presence of interfering radioisotopes (RIs), 134Cs and 137Cs. In this study, we developed an artificial neural network (ANN) to improve the performance of the FastScan in the lung configuration. All of the RMSE values derived by the ANN satisfied the criterion, even though the photopeaks of 134Cs and 137Cs interfered with those of the analytes or the analyte photopeaks were located in a low-energy region below 300 keV. Since the ANN performed better than the PA method, it would be expected to be a promising approach to improve the accuracy and precision of in vivo FastScan measurement for the lung configuration.

Requirements for Meeting Consumer Expectations to Expand the Market for Organic Products (유기식품 시장의 확대를 위한 소비자 기대 충족 요건)

  • Pearson, David;Jung, Man-Chul
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.491-502
    • /
    • 2012
  • The world's food production systems are becoming an area of great concern for both human and ecological health. Research has identified that one of the greatest threats to sustainability is conventional industrial agricultural systems and the high energy and material cost they require to function. The organic food movement is contributing as promising alternative to the current dominant model. Over the last 50 years it has developed into the most visible brand for a healthier and more environmentally sustainable food system. However, to achieve its full potential there are still a number of hurdles which must be overcome to make organic products a more viable and appealing option for consumers. This paper provides an overview of key research that has been conducted on why consumers are buying organic products, what they are buying and what is preventing them from purchasing more. It concludes that the key challenge is for the organic food movement to convince existing consumers of the superior 'value' of its products. In addition there are a number of methodological issues associated with analysing the market for organic products as well as issues of limited distribution, intermittent availability and high prices that are currently preventing increases in sales. Recognition and management of these barriers could contribute to more effective targeted research into consumer food purchasing motivations and subsequently the development of more sophisticated marketing strategies that assist in maintaining integrity with consumers and fending off challenges from conventional as well as other complementary food systems such as local food movement. And finally to achieve these market growth strategies the organic food movement will need to cope with its diverse constituency - ranging from global corporates through to local production and consumption - and provide attractive opportunities to individuals and business at all stages in supply chain whilst retaining credibility with government to ensure ongoing policy support.

Interfacial modulus mapping of layered dental ceramics using nanoindentation

  • Theocharopoulos, Antonios L;Bushby, Andrew J;P'ng, Ken MY;Wilson, Rory M;Tanner, K Elizabeth;Cattel, Michael J
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.479-488
    • /
    • 2016
  • PURPOSE. The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS. YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A $5{\mu}m$ (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load - partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X - ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS. A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of $40{\mu}m$ in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION. The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces.

Seasonal and Latitudinal Variations of the F2-Layer during Magnetic Storms

  • Park, Yoon-Kyung;Kwak, Young-Sil;Ahn, Byung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.231-239
    • /
    • 2013
  • To identify seasonal and latitudinal variations of F2 layer during magnetic storm, we examine the change of daily averages of foF2 observed at Kokubunji and Hobart during high (2000~2002) and low (2006~2008) solar activity intervals. It is found that geomagnetic activity has a different effect on the ionospheric F2-layer electron density variation for different seasons and different latitudes. We, thus, investigate how the change of geomagnetic activity affects the ionospheric F2-layer electron density with season and latitude. For this purpose, two magnetic storms occurred in equinox (31 March 2001) and solstice (20 November 2003) seasons are selected. Then we investigate foF2, which are observed at Kokubunji, Townsville, Brisbane, Canberra and Hobart, Dst index, Ap index, and AE index for the two magnetic storm periods. These observatories have similar geomagnetic longitude, but have different latitude. Furthermore, we investigate the relation between the foF2 and the [O]/[$N_2$] ratio and TEC variations during 19-22 November 2003 magnetic storm period. As a result, we find that the latitudinal variations of [O]/[$N_2$] ratio and TEC are closely related with the latitudinal variation of foF2. Therefore, we conclude that the seasonal and latitudinal variations of foF2 during magnetic storm are caused by the seasonal and latitudinal variations of mean meridional circulation of the thermosphere, particularly upwelling and downwelling of neutral atmosphere during magnetic storm.

Characteristics of Internal and External Exposure of Radon and Thoron in Process Handling Monazite (모나자이트 취급공정에서의 라돈 및 토론 노출 특성)

  • Chung, Eun Kyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.167-175
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate airborne radon and thoron levels and estimate the effective doses of workers who made household goods and mattresses using monazite. Methods: Airborne radon and thoron concentrations were measured using continuous monitors (Rad7, Durridge Company Inc., USA). Radon and thoron concentrations in the air were converted to radon doses using the dose conversion factor recommended by the Nuclear Safety and Security Commission in Korea. External exposure to gamma rays was measured at the chest height of a worker from the source using real-time radiation instruments, a survey meter (RadiagemTM 2000, Canberra Industries, Inc., USA), and an ion chamber (OD-01 Hx, STEP Co., Germany). Results: When using monazite, the average concentration range of radon was $13.1-97.8Bq/m^3$ and thoron was $210.1-841.4Bq/m^3$. When monazite was not used, the average concentration range of radon was $2.6-10.8Bq/m^3$ and the maximum was $1.7-66.2Bq/m^3$. Since monazite has a higher content of thorium than uranium, the effects of thoron should be considered. The effective doses of radon and thoron as calculated by the dose conversion factor based on ICRP 115 were 0.26 mSv/yr and 0.76 mSv/yr, respectively, at their maximum values. The external radiation dose rate was $6.7{\mu}Sv/hr$ at chest height and the effective dose was 4.3 mSv/yr at the maximum. Conclusions: Regardless of the use of monazite, the total annual effective doses due to internal and external exposure were 0.03-4.42 mSv/yr. Exposures to levels higher than this value are indicated if dose conversion factors based on the recently published ICRP 137 are applied.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

Aerodynamic behavior of supertall buildings with three-fold rotational symmetric plan shapes: A case study

  • Rafizadeh, Hamidreza;Alaghmandan, Matin;Tabasi, Saba Fattahi;Banihashemi, Saeed
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.407-419
    • /
    • 2022
  • Many factors should be considered by architects and designers for designing a tall building. Wind load is one of these important factors that govern the design of tall building structures and can become a serious challenge when buildings tend to be built very tall and slender. On the other hand, through the initial stages of a design process, choosing the design geometry greatly affects the wind-induced forces on a tall building. With this respect, geometric shapes with 3-fold rotational symmetry are one of the applied plan shapes in tall buildings. This study, therefore, aims to investigate the aerodynamic characteristics of 8 different geometrical shapes using Computational Fluid Dynamics (CFD) by measuring the drag and lift forces. A case study approach was conducted in which different building shape models have the same total gross area and the same height of 300 meters. The simulation was an incompressible transient flow that ran 1700 timesteps (85 seconds on the real-time scale). The results show a great difference between wind-induced force performance of buildings with different plan shapes. Generally, it is stated that the shapes with the same area, but with smaller perimeters, are better choices for reducing the drag force on buildings. Applying the lift force, the results show that the buildings with plan shapes that have rounded corners act better in crosswind flow while, those with sharp corners induce larger forces in the same direction. This study delivers more analytical understanding of building shapes and their behavior against the wind force through the parametric modelling.

Source and LVis based coincidence summing correction in HPGe gamma-ray spectrometry

  • Lee, Jieun;Kim, HyoJin;Kye, Yong Uk;Lee, Dong Yeon;Kim, Jeung Kee;Jo, Wol Soon;Kang, Yeong-Rok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1754-1759
    • /
    • 2022
  • The activity of gamma-ray emitting nuclides is calculated assuming that each gamma-ray is detected individually; thus, the magnitude of the coincidence summing signal must be considered during activity calculations. Here, the correction factor for the coincidence summing effect was calculated, and the detection efficiencies of two HPGe detectors were compared. The CANBERRA Inc. GC4018 high-purity Ge detector provided an estimate for the peak-to-total ratio using a point source to determine the coincidence summing correction factor. The ORTEC Inc. GEM60 high-purity Ge detector uses EFFTRAN in LVis to obtain the parameters of the detector and source model and the gamma-gamma and gamma-X match estimates, in order to determine the coincidence summing correction factor. Nuclide analyses, radioactivity comparisons, and analyses of reference material samples were performed utilizing certified reference materials to accurately determine the detection efficiencies. For both Co-60 and Y-88, the detection efficiency for a point source increased by an average of at least 12-13%, whereas the detection efficiency determined using LVis increased by an average of at least 13-15%. The calculated radioactivity values of the certified reference material and reference material samples were accurate to within 3% and 6% of the measured values, respectively.

Development and Performance Test of Preamplifier and Amplifier for Gamma Probe (감마프로브용 전단증폭기와 주증폭기의 개발과 성능 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Lee, Jong-Doo;Kwon, Soo-Il
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.100-109
    • /
    • 1999
  • Purpose: Preamplifier and amplifier are very important parts for developing a portable counting or imaging gamma probe. They can be used for analyzing pulses containing energy and position information for the emitted radiations. The commercial Nuclear Instrument Modules (NIMs) can be used for processing these pulses. However, it may be improper to use NIMs in developing a portable gamma probe, because of its size and high price. The purpose of this study was to develop both preamplifier and amplifier and measure their performance characteristics. Materials and Methods: The preamplifier and amplifier were designed as a charge sensitive device and a capacitor resistor-resistor capacitor (CR-RC) electronic circuit, respectively, and they were mounted on a print circuit board (PCB). We acquired and analyzed energy spectra for Tc-99m and Cs-137 using both PCB and NIMs. Multichannel analyzer (Accuspec/A, Canberra Industries Inc., Meriden Connecticut, U.S.A) and scintillation detectors (EP-047(Bicron Saint-Gobain/Norton Industrial EP-047 (Ceramics Co., Ohio, U.S.A) with $2"{\times}2"$ NaI(T1) crystal and R1535 (Hamamatsu Photonics K.K., Electron Tube Center, Shizuoka-ken, Japan) with $1"{\times}1"$ NaI(T1) crystal were used for acquiring the energy spectra. Results: Using PCB, energy resolutions of EP-047 detectors for Tc-99m and Cs-137 were 12.92% and 5.01%, respectively, whereas R1535 showed 13.75% and 5.19% of energy resolution. Using the NIM devices, energy resolutions of EP-047 detector for Tc-99m and Cs-137 were measured as 14.6% and 7.58%, respectively. However, reliable energy spectrum of R1535 detector could not be acquired, since its photomultiplier tube (PMT) requires a specific type of preamplifier. Conclusion: We developed a special preamplifier and amplifier suitable for a small sized gamma probe that showed good energy resolutions independent of PMT types. The results indicate that the PCB can be used in developing both counting and imaging gamma probe.

  • PDF

Determination of Self-Disposal date by the Analysis of Radioactive Waste Contamination for 1131I Therapy Ward (131I 치료입원실 폐기물 방사능 오염도 분석 및 자체처분가능일자 산출)

  • Kim, Gi-sub;Jung, Haijo;Park, Min-seok;Jeon, Gjin-seong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.3-6
    • /
    • 2013
  • Purpose: The treatment of thyroid cancer patients was continuously increased. According to the increment of thyroid cancer patients, the establishment of iodine therapy site was also increased in each hospital. This treatment involves the administration of radioactive iodine, which will be given in the form of a capsule. Therefore, protections and managements for radioactive source pollution and radiation exposure should be necessary for radiation safety. Among the many problems, the problem of disposing the radioactive wastes was occurred. In this study, The date for self-disposal for radioactive wastes, which were contaminated in clothes, bedclothes and trash, were calculated. Materials and Methods: The number of iodine therapy ward was 15 in Korea Institute of Radiological Medical and Sciences. Recently, 8 therapy wards were operated for iodine therapy patients and others were on standby for emergency treatment ward of any radiation accidents. Radioactive wastes, which were occurred in therapy ward, were clothes, bedclothes, bath cover for patients washing water and food and drink which was leftover by patients. Each sample was hold into the marinelli beaker (clothes, bedclothes, bath covers) and 90 ml beaker (food, drink, and washing water). The activities of collected samples were measured by HpGe MCA device (Multi Channel Analysis, CANBERRA, USA) Results: The storage period for the each kind of radioactive wastes was calculated by equation of storage periods based on the measurement outcomes. The average storage period was 60 days for the case of clothes, and the maximum storage period was 93 days for patient bottoms. The average storage period and the maximum storage period for the trash were 69 days and 97 days, respectively. The leftover foods and drinks had short storage period (the average storage period was 25 days and maximum storage period was 39 days), compared with other wastes. Conclusion: The proper storage period for disposing the radioactive waste (clothes, bedclothes and bath cover) was 100 days by the regulation on self-disposal of radioactive waste. In addition, the storage period for disposing the liquid radioactive waste was 120 days. The current regulation for radioactive waste self-disposing was not suitable for the circumstances of each radioactive therapy facility. Therefore, it was necessary to reduce the leftover food and drinks by adequate table setting for patients, and improve the process and regulation for disposing the short-half life radioactive wastes.

  • PDF