• Title/Summary/Keyword: can materials

Search Result 21,023, Processing Time 0.059 seconds

Improved Activity Estimation using Combined Scatter and Attenuation Correction in SPECT (단일광자방출단층촬영 영상에서 산란 및 감쇠 보정에 위한 절대방사능 측정)

  • Lee, Jeong-Rim;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Seong-Wun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.382-390
    • /
    • 1998
  • Purpose: The purpose of this study was to evaluate the accuracy of radioactivity quantitation in Tc-99m SPECT by using combined scatter and attenuation correction. Materials and Methods: A cylindrical phantom which simulates tumors (T) and normal tissue (B) was filled with varying activity ratios of Tc-99m. We acquired emission scans of the phantom using a three-headed SPECT system (Trionix, Inc.) with two energy windows (photopeak window: $126{\sim}154keV$ and scatter window: $101{\sim}123keV$). We performed the scatter correction with dual-energy window subtraction method (k=0.4) and Chang attenuation correction. Three sets of SPECT images were reconstructed using combined scatter and attenuation correction (SC+AC), attenuation correction (AC) and without any correction (NONE). We compared T/B ratio, image contrast [(T-B)/(T+B)] and absolute radioactivity with true values. Results: SC+AC images had the highest mean values of T/B ratios. Image contrast was 0.92 in SC+AC, which was close to the true value of 1, and higher than AC (0.77) or NONE (0.80). Errors of true activity by SPECT images ranged from 1 to 11% for SC+AC, $22{\sim}47%$ for AC, and $2{\sim}16%$ for NONE in a phantom which was located 2.4cm from the phantom surface. In a phantom located 10.0cm from the surface, SC+AC underestimated by 24%, NONE 40%. However, AC overestimated by 10%. Conclusion: We conclude that accurate SPECT activity quantitation of Tc-99m distribution can be achieved by dual window scatter correction combind with attenuation correction.

  • PDF

Development of Decision Tree Software and Protein Profiling using Surface Enhanced laser Desorption/lonization - Time of Flight - Mass Spectrometry (SELDI-TOF-MS) in Papillary Thyroid Cancer (의사결정트리 프로그램 개발 및 갑상선유두암에서 질량분석법을 이용한 단백질 패턴 분석)

  • Yoon, Joon-Kee;Lee, Jun;An, Young-Sil;Park, Bok-Nam;Yoon, Seok-Nam
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.299-308
    • /
    • 2007
  • Purpose: The aim of this study was to develop a bioinformatics software and to test it in serum samples of papillary thyroid cancer using mass spectrometry (SELDI-TOF-MS). Materials and Methods: Development of 'Protein analysis' software performing decision tree analysis was done by customizing C4.5. Sixty-one serum samples from 27 papillary thyroid cancer, 17 autoimmune thyroiditis, 17 controls were applied to 2 types of protein chips, CM10 (weak cation exchange) and IMAC3 (metal binding - Cu). Mass spectrometry was performed to reveal the protein expression profiles. Decision trees were generated using 'Protein analysis' software, and automatically detected biomarker candidates. Validation analysis was performed for CM10 chip by random sampling. Results: Decision tree software, which can perform training and validation from profiling data, was developed. For CM10 and IMAC3 chips, 23 of 113 and 8 of 41 protein peaks were significantly different among 3 groups (p<0.05), respectively. Decision tree correctly classified 3 groups with an error rate of 3.3% for CM10 and 2.0% for IMAC3, and 4 and 7 biomarker candidates were detected respectively. In 2 group comparisons, all cancer samples were correctly discriminated from non-cancer samples (error rate = 0%) for CM10 by single node and for IMAC3 by multiple nodes. Validation results from 5 test sets revealed SELDI-TOF-MS and decision tree correctly differentiated cancers from non-cancers (54/55, 98%), while predictability was moderate in 3 group classification (36/55, 65%). Conclusion: Our in-house software was able to successfully build decision trees and detect biomarker candidates, therefore it could be useful for biomarker discovery and clinical follow up of papillary thyroid cancer.

Usefulness of F-18 FDG PET/CT in Adrenal Incidentaloma: Differential Diagnosis of Adrenal Metastasis in Oncologic Patients (부신 우연종에서 F-18 FDG PET/CT의 유용성: 악성 종양 환자에서 부신 전이의 감별진단)

  • Lee, Hong-Je;Song, Bong-Il;Kang, Sung-Min;Jeong, Shin-Young;Seo, Ji-Hyoung;Lee, Sang-Woo;Yoo, Jeong-Soo;Ahn, Byeong-Cheol;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.421-428
    • /
    • 2009
  • Purpose: We have evaluated characteristics of adrenal masses incidentally observed in nonenhanced F-18 FDG PET/CT of the oncologic patients and the diagnostic ability of F-18 FDG PET/CT to differentiate malignant from benign adrenal masses. Materials and Methods: Between Mar 2005 and Aug 2008, 75 oncologic patients (46 men, 29 women; mean age, $60.8{\pm}10.2$ years; range, 35-87 years) with 89 adrenal masses incidentally found in PET/CT were enrolled in this study. For quantitative analysis, size (cm), Hounsfield unit (HU), maximum standardized uptake value (SUVmax), SUVratio of all 89 adrenal masses were measured. SUVmax of the adrenal mass divided by SUVliver, which is SUVmax of the segment 8, was defined as SUVratio. The final diagnosis of adrenal masses was based on pathologic confirmation, radiologic evaluation (HU<0 : benign), and clinical decision. Results: Size, HU, SUVmax, and SUVratio were all significantly different between benign and malignant adrenal masses.(P < 0.05) And, SUVratio was the most accurate parameter. A cut-off value of 1.0 for SUVratio provided 90.9% sensitivity and 75.6% specificity. In small adrenal masses (1.5 cm or less), only SUVratio had statistically significant difference between benign and malignant adrenal masses. Similarly a cut-off value of 1.0 for SUVratio provided 80.0% sensitivity and 86.4% specificity. Conclusion: F-18 FDG PET/CT can offer more accurate information with quantitative analysis in differentiating malignant from benign adrenal masses incidentally observed in oncologic patients, compared to nonenhanced CT.

The Clinical Value of Dual Time Point F-18 FDG PET/CT Imaging for the Differentiation of Colonic Focal Uptake Lesions (장관 내 국소 섭취증가 병소의 감별에 있어 추가 지연 F-18 FDG PET/CT의 임상적 유용성)

  • Kim, Jin-Suk;Lim, Seok-Tae;Jeong, Young-Jin;Kim, Dong-Wook;Jeong, Hwan-Jeong;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.309-316
    • /
    • 2009
  • Purpose: F-18 FDG can be accumulated in the liver, bowel, kidney, urinary tract, and muscles physiologically. The aim of this study was to evaluate the clinical value of dual time point 18F-FDG PET /8 imaging for the differentiation of the colonic focal uptake lesions. Materials and Methods: One hundred thirty two patients (M:F = 77:55, Age 62.8$\pm$11.6 years) underwent $^{18}$F-FDG PET/CT at two time points, prospectively: early image at 50-60 min and delayed image at 4-4.5 hours after the intravenous injection of $^{18}$F-FDG. Focally increased uptake lesions on early images but disappeared or shifted on delayed images defined a physiological uptake. For the differential evaluation of persistent focal uptake lesions on delayed images, colonoscopy and histopathologic examination were performed. SUVmax changes between early and delayed images were also compared. Results: Among the 132 patients, 153 lesions of focal colonic uptake were detected on early images of $^{18}$F-FDG PET/CT. Of these, 72 (47.1%) lesions were able to judge with physiological uptake because the focal increased uptake disappeared from delayed image. Among 81 lesions which was showed persistent increased uptake in delayed image, 61 (75.3%) lesions were confirmed as the malignant tumor and 14 (17.3%) lesions were confirmed as the benign lesions including adenoma and inflammatory disease. Remaining 6 (7.4%) lesions were confirmed as the physiological uptake because there was no particular lesion in the colonoscopy. In the malignant lesions, the calculated dual time point change for SUVmax ($\Delta$%SUVmax) was 20.8$\pm$18.7%, indicating a significant increase in SUVmax between the two point (p<0.01). In contrast, the change in SUVmax for the non-malignant lesions including benign lesions and physiological uptake was -13.7%$\pm$24.2%. For the differentiation of the malignant and non-malignant focal colonic uptake lesions, $\Delta$%SUVmax was the most effective parameter, and the cut-off value using -5% provided the best sensitivity, specificity, and accuracy. Conclusion: The dual time point $^{18}$F-FDG PET/CT imaging with SUVmax change evaluation could be an important noninvasive method for the differentiation of malignant and benign focal colonic uptake lesions including physiologic uptake.

Value of the Serum Thyroglobulin Level Alteration at the First High Dose Radioiodine Treatment in Patients with Differentiated Thyroid Carcinoma (분화성갑상선암에서 최초 고용량 방사성요오드 치료시 혈청 갑상선글로불린 수치 변화의 의의)

  • Nam, Hyun-Yeol;Kim, In-Joo;Kim, Yong-Ki;Kim, Seong-Jang;Jun, Sung-Min;Kim, Bum-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate if short-term serum thyroglobulin (Tg) elevation after radioiodine administration can predict successful radioiodine remnant ablation (RRA) and whether comparable RRA effectiveness is exhibited between a group administered with recombinant human thyrotropin (rhTSH) and a group experiencing thyroid hormone withdrawal (THW), in preparation for RRA. Materials and Methods: A retrospective chart review was performed on 39 patients in the rhTSH group and 46 patients in the THW group. They were treated for differentiated thyroid carcinoma by total or near total thyroidectomy, and referred for RRA between 2003 and 2006 (the rhTSH group) and between January and June of 2006 (the THW group). They were assessed for serum Tg levels just before I-131 administration (TgD0), reassessed 9 days later (TgD9), and again 6-12 months later. Results: RRA was successful in 64 (37 from the THW group and 27 from the rhTSH group) of the total 85 patients. The success rates of RRA had no statistically significant differences between the two groups. In both groups, TgD9/TgD0 values were significantly higher in the RRA success group (the rhTSH group; P = 0.03, the THW group; P = 0.04). By combining cutoff values of TgD0 and TgD9/TgD0, the successful RRA value was determined to be 96.7% (29/30) with TgD0$\leq$5.28 ng/mL and TgD9/TgD0>4.37 in both groups (the rhTSH group; 100% (16/16), the THW group; 92.9% (13/14)). Using logistic multivariate analysis, only TgD0 was independently associated with successful RRA. Conclusion: We may predict successful ablation by evaluating short-term serum Tg elevation after I-131 administration for RRA, in both rhTSH and THW patients.

Reducing Dose in SPECT/CT Using Adaptive Statistical Iterative Reconstruction Technique (Adaptive Statistical Iterative Reconstruction 기법을 이용한 Bone SPECT/CT 검사에서 피폭량 감소 방안)

  • Choi, Jin-Wook;Choi, Hyeon-Jun;Park, Chan-Rok;Cho, Sung-Wook;Kim, Jin-Eui;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.134-139
    • /
    • 2014
  • Purpose: Adaptive statistical iterative reconstruction (ASIR) technique is a reconstruction method of CT image using statistical noise modeling which is known to reduce image noise and to preserve image quality despite reducing radiation dose. The aim of this study is to evaluate images using ASIR on bone SPECT/CT which is primarily performed in our hospital. Materials and Methods: We compared the images of applied ASIR (ASIR level: 20-80%) and none ASIR by changing the mA based on 120 kVp, 100 mA using Discovery NM/CT 670 (GE, U.S.A). First, we evaluated attenuation correction in SPECT image by changing the ASIR level using Anthropomorphic phantom. Second, we compared the contrast to noise ratio (CNR), image noise and spatial resolution in CT image using ACR phantom. Third, after selecting the ASIR level applicable patient using lower torso phantom, we examined 2 patients who followed up bone SPECT/CT and we performed blind test. Results: The degree of attenuation correction in SPECT image showed no significant difference between applied ASIR and none ASIR (P>0.05). When applied ASIR, the noise of CT image were reduced at least 17 up to 52% by changing the mA. The CNR of image with ASIR was maintained more than 0.8 at 40 mA (ASIR 60%) while those without ASIR showed 0.42 at standard 40 mA. In comparison of the high contrast object, we distinguished 12 line pairs/cm at 40 mA regardless of appling ASIR. Comparison of the patients image applied ASIR level 60% (40 mA) which found out by spine image of lower torso phantom showed no signigicant difference between applied ASIR and none ASIR in blind test. The CTDIvol and DLP for applied ASIR 60% showed decreased by 60%, 60% on average than using standard mA. Conclusion: The study show that the radiation dose in SPECT/CT using ASIR can be reduced despite degradation of SPECT and CT images. In addition, higher ASIR level could be possibly applied characteristics of SPECT/CT that region of interest is limited to bone.

  • PDF

Comparative Evaluation for the Effect of SUV's Due to a Residual Radio-activity Location Inside Vascular Insert Devices During PET/CT Scans (PET/CT 검사 시 혈관삽입기구 내 잔여 방사능 위치에 따른 표준섭취계수의 영향 비교 평가)

  • Sim, Woo Yong;Kim, Jung Yul;Cho, Suk Won;Oh, Shin Hyun;Lim, Han Sang;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.94-97
    • /
    • 2014
  • Purpose: Standardized uptake value (SUV) is a simple semi-quantitative method that can measure the ratio of the tissue radioactivity between the tumor and normal. SUV is commonly used in PET/CT, however, SUV is affected by various factor. The purpose of this study was to evaluate the impact of the residual activity on SUV depending on the location of catheter insertion device post injection. Materials and Methods: NEMA IEC Body Phantom was imaged using a Discovery 600 PET scanner. In 22 mm diameter sphere, the different activity of $^{18}F-FDG$ (7.4, 14.8, 22.2, 29.6, 37, 55.5 MBq) was filled and background was filled with $^{18}F-FDG$ (5.7 kBq/mL). We scaned the phantom on the assumption that the radioactivity in sphere was residual activity in insertion device. Simulation of PET was divided into three groups based on the location of sphere in Scan FOV (SFOV); inclusion, 1/2 inclusion and exclusion group. Results: Among three groups, the group of excluded sphere showed the highest SUV regardless of the amount of $^{18}F-FDG$ activity. In case of 7.4 MBq, average SUV of inclusion group, 1/2 inclusion and exclusion group was 0.780, 0.840 and 0.896 respectively. However, average SUV of 55.5 MBq showed 0.372, 0.460 and 0.508 with same order. Depend on residual radioactivity in the sphere and position of sphere, the SUV was different minimum of 10.4%, maximum of 62.8%. Conclusion: This study showed that SUV is underestimated as the residual radio-activity is increased. In addition, SUV was a changed according to the position of residual radio-activity. And among the position, exclusion group showed the difference of SUV was lowest. If we measure the residual radio-activity of inserting devices and radio-activity from extra-vasation in the patients, it seems to be more useful in clinical field.

  • PDF

Consideration of Standardized Uptake Value (SUV) According to the Change of Volume Size through the Application of Astonish TF Reconstruction Method (Astonish TF 재구성 기법의 적용을 통한 체적 크기의 변화에 따른 표준섭취계수(SUV)에 관한 고찰)

  • Lee, Juyoung;Nam-Kung, Sik;Kim, Ji-Hyeon;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.115-121
    • /
    • 2014
  • Purpose: In addition to improving the quality of the PET image, through much research, the development of various programs are performed. Astonish TF reconstruction techniques by Philips can confirm the improved contrast of the lesion. Also, It's image reconstruction of 2 mm is possible with rapid reconstruction rate than conventional. In this study, we compared and evaluated Standardized Uptake Value (SUV) in accordance with the 2 mm reconstruction techniques and traditional 4 mm from the $^{18}F-FDG$ PET whole body image. Materials and Methods: In the phantom experiment, NEMA IEC body phantom (sphere: 10, 13, 17, 22, 28, 37 mm) was used to obtain images by using GEMINI TF 64 PET/CT (Philips, Cleveland, USA). Also, In the clinical images, we performed $^{18}F-FDG$ PET/CT examination to 30 women (age: $55.1{\pm}11.3$, BMI: $24.1{\pm}2.9$) with a diagnosis of breast cancer. After that, we reconstructed images in 2 mm and 4 mm respectively. The region of interest was drawn to acquired images. Since then, we measured SUV and statistically analyzed with SPSS ver.18 by using EBW (Extended Brilliance Workstation) NM ver.1.0. Results: After analyzing the result of the phantom study, there was a tendency that the bigger hot sphere size, the higher SUV. If you compared the 2 mm reconstruction techniques to 4 mm, it increased 95.78% in 10 mm, 50.60% in 13 mm, 25.00% in 17 mm, 30.04% in 22 mm, 31.81% in 28 mm, and 27.84% in 37 mm. Through the result of the analysis of the 2 mm reconstruction techniques and 4 mm in clinical images, it appeared that SUV of 2 mm was higher than that of 4 mm. Also the smaller the volume was, the more the change rate increased. Conclusion: After analyzing the result of the clinical picture and phantom experiments applied by Astonish TF reconstruction techniques, as the size of the volume was small, the change rate of the SUV increased. Therefore, it was necessary to further research about the SUV correction for accurate and active utilization of 2 mm reconstruction techniques which had excellent lesion discrimination ability and contrast in clinic.

  • PDF

Clinical Usefulness of PET-MRI in Lymph Node Metastasis Evaluation of Head and Neck Cancer (두경부암 림프절 전이 평가에서 PET-MRI의 임상적 유용성)

  • Kim, Jung-Soo;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Purpose: As PET-MRI which has excellent soft tissue contrast is developed as integration system, many researches about clinical application are being conducted by comparing with existing display equipments. Because PET-MRI is actively used for head and neck cancer diagnosis in our hospital, lymph node metastasis before the patient's surgery was diagnosed and clinical usefulness of head and neck cancer PET-MRI scan was evaluated using pathological opinions and idiopathy surrounding tissue metastasis evaluation method. Materials and Methods: Targeting 100 head and neck cancer patients in SNUH from January to August in 2013. $^{18}F-FDG$ (5.18 MBq/kg) was intravenous injected and after 60 min of rest, torso (body TIM coil, Vibe-Dixon) and dedication (head-neck TIM coil, UTE, Dotarem injection) scans were conducted using $Bio-graph^{TM}$ mMR 3T (SIEMENS, Munich). Data were reorganized using iterative reconstruction and lymph node metastasis was read with Syngo.Via workstation. Subsequently, pathological observations and diagnosis before-and-after surgery were examined with integrated medical information system (EMR, best-care) in SNUH. Patient's diagnostic information was entered in each category of $2{\times}2$ decision matrix and was classified into true positive (TP), true negative (TN), false positive (FP) and false negative (FN). Based on these classified test results, sensitivity, specificity, accuracy, false negative and false positive rate were calculated. Results: In PET-MRI scan results of head and neck cancer patients, positive and negative cases of lymph node metastasis were 49 and 51 cases respectively and positive and negative lymph node metastasis through before-and-after surgery pathological results were 46 and 54 cases respectively. In both tests, TP which received positive lymph node metastasis were analyzed as 34 cases, FP which received positive lymph node metastasis in PET-MRI scan but received negative lymph node metastasis in pathological test were 4 cases, FN which received negative lymph node metastasis but received positive lymph node metastasis in pathological test was 1 case, and TN which received negative lymph node metastasis in both two tests were 50 cases. Based on these data, sensitivity in PET-MRI scan of head and neck cancer patient was identified to be 97.8%, specificity was 92.5%, accuracy was 95%, FN rate was 2.1% and FP rate was 7.00% respectively. Conclusion: PET-MRI which can apply the acquired functional information using high tissue contrast and various sequences was considered to be useful in determining the weapons before-and-after surgery in head and neck cancer diagnosis or in the evaluation of recurrence and remote detection of metastasis and uncertain idiopathy cervical lymph node metastasis. Additionally, clinical usefulness of PET-MRI through pathological test and integrated diagnosis and follow-up scan was considered to be sufficient as a standard diagnosis scan of head and neck cancer, and additional researches about the development of optimum MR sequence and clinical application are required.

  • PDF

Abosrbed Dose Measurements and Phantom Image Ecaluation at Minimum CT Dose for Pediatric SPECT/CT Scan (소아 SPECT/CT 검사를 위한 최저조건에서의 피폭선량측정 및 팬텀의 영상평가)

  • Park, Chan Rok;Choi, Jin Wook;Cho, Seong Wook;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.82-88
    • /
    • 2014
  • Purpose: The purpose of study was to evaluate radiation dose for pediatric patients by changing tube voltage (kVp) and tube current (mA) at minimum conditions. By evaluating radiation dose, we want to provide dose reduction for pediatric patients and maintain good quality of SPECT/CT images. Materials and Methods: Discovery NM/CT 670 Scanne was used as SPECT/CT. Tube voltages are 80 and 100 kvP. Tube currents are 10, 15, 20, 25 mA. Using PMMA (Polymethyl methacrylate) Phantom, radiation dose which were calculated at center and peripheral dose and SNRD (Signal to Noise Ratio Dose) were evaluated. Using the CT performance phantom, spatial resolution was evaluated as the MTF (Modulation Transfer Function) graph. Jaszczak phantom was used for SPECT image evaluation by CNR (Contrast to Noise to Ratio). Results: Radiation dose using the PMMA phantom was higher peripheral dose than center dose about 7%. SNRD were 7.8, 8.2, 8.3, 8.8, 8.8, 9.9, 9.8, 9.6 for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. We can distinguish 35, 45, 70, 71, 52, 58, 90, 110 linepair for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA at resolution with MTF. CNR of SPECT images using CT attenuation map were 57.8, 57.7, 57.1, 56.7, 56.6, 56.7, 56.7, 56.7% for 80 kVp 10, 15, 20, 25 mA, 100 kVp 10, 15, 20, 25 mA. Conclusion: In this study, radiation dose for pediatric patients showed decreased low dose condition. And SNRD value was similar in all condition. Resolution showed higher value at 100kVp than 80kVp. for CNR, there was no significant difference. we should take additional study to prove better quality and dose reduction.

  • PDF