• Title/Summary/Keyword: can materials

Search Result 20,788, Processing Time 0.048 seconds

New Photo-Alignment Materials for LCD as a Non-Rubbing Method.

  • Kumano, Atsushi;Takeuchi, Yasumasa;Nakata, Shoichi;Kimura, Masayuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.953-956
    • /
    • 2002
  • We successfully developed new photo-alignment materials which can be treated with linearly polarized UV (LPUV) light in near UV region. The alignment films were also shown to provide with surface anchoring as strong as that on rubbed polyimide when exposed to the LPUV light with warming up the substrate. It can be also able to control pretilt angle by introduction of alkyl side chain.

  • PDF

Inorganic and Organic Nano Materials and Devices

  • Li, G.P.;Bachman, Mark
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.4.1-4.1
    • /
    • 2009
  • The dream of futurists andtechnologists is to build complex, multifunctional machines so small that theycan only be seen with the aid of a microscope. The unprecedented technologyadvancements in miniaturizing integrated circuits on semiconductors, and theresulting plethora of sophisticated, low cost electronic devices demonstratethe impact that micro/nano scale engineering can have when applied only to thearea of electrical and computer engineering. Emerging research efforts indeveloping organic and inorganic nano materials together with using micro/nanofabrication techniques for implementing integrated multifunctional devices hopeto yield similar revolutions in other engineering fields. By cross linking theindividual engineering fields through micro/nano technology, various organicand inorganic materials and miniaturized system devices can be developed thatwill have future impacts in the IT and life science applications. Yet to buildthe complex micromachines and nanomachine of the future, engineering will needto develop the technology capable of seamlessly integrating these materials andsubsystems together at the micro and nano scales. The micromachines of thefuture will be “integrated nanosystems,” complex devices requiring the integration of multiple materials,phenomena, technologies, and functions at the same platform. To develop thistechnology will require great efforts in materials science and engineering, infundamental and applied sciences. In this talk, we will first discuss thenature of micro and nanotechnology research for IT and life sciences, and thenintroduce selected current activities in micro and nanotechnology research fororganic and inorganic materials and devices. The newly developed micro/nanofabrication processes and devices, combined with in-depth scientificunderstandings of materials, can lead to rapid development of next generationsystems for applications in IT and life sciences.

  • PDF

A Study on Environment Friendly Building Materials from Ecological Perspectives (생태학적 관점에 의한 환경친화적 건축 재료에 관한 연구)

  • 한경희;김자경
    • Korean Institute of Interior Design Journal
    • /
    • no.41
    • /
    • pp.236-245
    • /
    • 2003
  • Environment friendly architecture, which will reduce shortcomings of current architectural culture, can be achieved by using natural energy and environment friendly building materials together with their environmental architecture techniques. Particularly, even though the overall building system is perfect, it cannot be considered as comfortable architectural space if the materials are polluted, harmful to human bodies and producing wastes. Therefore, in order to build environment friendly architecture, the selection of the materials is very important and necessary from the planning stage with careful reviews and concern. This study tries to define what the environment friendly materials we, to investigate and to classify them, in order to provide some guidelines for selecting them at plans to build. For examples, the materials can be classified into natural materials, continuously usable materials, recycled materials from wastes, and less polluting materials mixed with natural materials. Finally, this study reviews the existing products in the market and proposes to develop new ones in the future. It will present the circulation of resources in the 21century through recycled and reused materials.

Formation of single-crystal Si islands via continuous-scan Sequential Lateral Solidification

  • Turk, B.A.;Wilt, P.C. var der;Limanov, A.B.;Chitu, A.M.;Im, J.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.245-247
    • /
    • 2003
  • We have previously shown that single-crystal Si regions on glass substrates can be obtained by crystallizing as-deposited a-Si films using a specific version of the SLS process, referred to as dot-SLS Such single-crystal islands can, for instance, be used for manufacturing of high-performance TFTs that are expected to become increasingly more relevant in the future. In this paper, we demonstrate that the dot-SLS process can be implemented using a continuous-scan SLS scheme that enables the attainment of high crystallization rates that are desired for industrial applications. We will furthermore report on recent experimental findings regarding the nature of the defects that can be created during the process.

  • PDF

Inorganic ferroelectric materials for LC alignment for high performance display design

  • Lee, Won-Gyu;Choe, Ji-Hyeok;Na, Hyeon-Jae;Im, Ji-Hun;Han, Jeong-Min;Hwang, Jeong-Yeon;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.161-161
    • /
    • 2009
  • Ion bombarded inorganic materials for LC alignment has been researched as it provides controllability in a nonstop process for producing high-resolution displays. Many optically transparent insulators such as $SiOx$ and a-C:H have been investigated as potential candidates for inorganic alignment materials. Even so, LC orientation on a new material with superior capacity is required to produce high-performance displays. Many inorganic materials with high permittivities can reduce the voltage losses due to the LC alignment layer that are a trade-off for its capacitance. The minimum voltage for device operation can be applied to the LC under low external voltage using these materials. This means that low power consumption for LCD applications can be achieved using a high-k alignment structure in which the LC can be driven effectively with a low threshold voltage. Among the many other potential high-k oxides, HfO2 is considered to be one of the most promising due to its remarkable properties of high dielectric constant, relatively low leakage current, large band gap (5.68 eV), and high transparency. Due to these characteristics, HfO2 can be used in LC alignment to increase the capacitance of the inorganic alignment layer for low-voltage driving of LCs.

  • PDF

Analysis of Twin in Mg Alloys Using Electron Backscatter Diffraction Technique

  • Lee, Jong Youn;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • Electron backscatter diffraction (EBSD) is widely used for quantitative microstructural analysis of the crystallographic nature of variety of materials such as metals, minerals, and ceramics. EBSD can provide a wide range of information on materials including grain size, grain orientation, texture, and phase identity. In the case of metallic alloys, EBSD now has become an essential technique to analyze the texture, particularly when severe deformation is applied to the alloys. In addition, EBSD can be one of the very useful tools in identification of twin, particularly in Mg alloys. In Mg alloys different type of twin can occur depending on the c/a ratio and stacking fault energy on the twinning plane. Such an occurrence of different type of twin can be most effectively analyzed using EBSD technique. In this article, the recent development of Mg alloys and occurrence of twin in Mg are reviewed. Then, recently published example for identification of tension and compression twins in AZ31 and ZX31 is introduced to explain how EBSD can be used for identification of twin in Mg.

Case Study on Sustainable office space of the LEED Green Building in the United States - Focused on the Materials and Resources of Indoor Evaluation Factors - (미국 내 LEED 그린빌딩의 지속가능한 업무공간 사례 연구 - 실내 평가요소 중 재료 및 자원을 중심으로 -)

  • Ha, Sook-Nyung;Han, Young-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.2
    • /
    • pp.176-185
    • /
    • 2013
  • (Background)In modern industrial society, the design industry failed to observe the law of nature, destructing it. Regardless its intention, the design industry destructed the environment so that it can't maintain the future life because of waste and disaster. For the purpose, it is important to adopt the technology to reuse the waste resource generated by building or minimize the damage to environment for the resource that can't be recycled. (Methods)On the assumption that the material and resource can be an alternative plan for the design that can make environment be sustained, the study analyzed materials and resources out of superior office space of USA, which were selected by LEED Green Building Rating System. (Results)The analysis result revealed that all cases reused main structural part of existing building and indoor and various materials were reused or recycled. Especially, the materials without or with low amount of VOCs and formaldehyde were used. In order to reduce construction waste, the finish of existing building was exposed as it was, 50% of reused materials were used or disassemblable materials were used. When regional materials are used, there is an advantage to reduce transportation cost and recycle the materials rapidly. Lastly, the environment-friendly certified by FSC was used in all cases. (Conclusion)After all, the material is one of the space design strategies sensitive to environment so it is important to select good material. Harmless, environment-friendly materials applied to sustainable office space contribute to the creation of healthy environment. In addition, the use of recycled materials and reused materials to minimize waste is also essential factor for creating sustainable space.

Nanocrystalline Materials-an Overview

  • Suryanarayana, C.
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.233-245
    • /
    • 1996
  • Nanocrystalline materials, with a grain size of typically <100 nm, are a new class of materials with properties vastly different from and often superior to those of the conventional coarse-grained materials. These materials can be synthesized by a number of different techniques and the grain size, morphology, and composition can be controlled by controlling the process parameters. In comparison to the coarse-grained materials, nanocrystalline materials show higher strength and hardness, enhanced diffusivity, improved ductility/toughness, reduced, density, reduced elastic modulus, higher electrical resistivity, increased specific heat, higher coefficient of thermal expansion, lower thermal conductivity, and superior soft and hard magnetic properties. Limited quantities of these materials are presently produced and marketed in the US, Canada, and elsewhere. Applications for these materials are being actively explored. The present article discusses the synthesis, structure, thermal stability, properties, and potential application of nanocrystalline materials.

  • PDF

Recent Studies on Performance Enhancement of Polycrystal SnSe Thermoelectric Materials (다결정 SnSe 열전 재료의 성능 개선 연구 동향)

  • Jung, Myeong Jun;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.152-158
    • /
    • 2022
  • Thermoelectric materials can reversely convert heat and electricity into each other; therefore, they can be very useful for energy harvesting from heat waste. Among many thermoelectrical materials, SnSe exhibits outstanding thermoelectric performance along the particular direction of a single crystal. However, single-crystal SnSe has poor mechanical properties and thus it is difficult to apply for mass production. Therefore, polycrystalline SnSe materials may be used to replace single-crystal SnSe by overcoming its inferior thermoelectric performance owing to surface oxidation. Considerable efforts are currently focused on enhancing the thermoelectric performance of polycrystalline SnSe. In this study, we briefly review various enhancement methods for SnSe thermoelectric materials, including doping, texturing, and nano-structuring. Finally, we discuss the future prospects of SnSe thermoelectric powder materials.

Ultra Violet (UV) Sensor based on Oxide Ceramic Materials (산화물 세라믹 재료 기반 자외선 센서)

  • Yu, Hak Ki
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • Research on ultraviolet (UV) light detection has attracted considerable attention from scientific researchers in related fields. It can be said that it is a very important time to accurately monitor the UV irradiation amount according to the wavelength region in real time. The oxide is very diverse in its kind and has the advantage of being able to efficiently control the band gap through band gap engineering. In addition, it is very stable in response to heat and atmospheric oxygen when UV is absorbed. Also, there is a known method that can effectively manufacture oxide nanoparticles and nanorods through various synthesis methods, and researches for improving the sensitivity of UV sensors have been carried out using this method. In this paper, we introduce the materials that can be used as UV sensors among various wide band oxide materials, and review the results of researches of various UV sensors using nano materials.