• Title/Summary/Keyword: camera vibration

Search Result 239, Processing Time 0.054 seconds

Measuring Vibration by using Line Scan Camera (라인 스캔 카메라를 이용한 진동 측정 기술)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Park, Jong Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.751-752
    • /
    • 2014
  • 센서를 사용한 구조물의 진동측정 시 여러 문제로 인해 사용의 제약을 받아왔다. 이를 극복 하고자 최근 카메라를 이용한 진동 측정 기술이 연구되고 있지만 보통 산업용 카메라의 낮은 샘플링 주파수로 인해 구조물의 진동 측정에 한계를 보였다. 이러한 문제를 해결하기 위하여 본 연구에서는 라인 스캔 카메라의 높은 샘플링 주파수를 이용한 진동 측정 기술을 제안하고 실험을 통하여 성능검증을 수행하였다.

  • PDF

Vibration Measurement of Cable by Image Processing Technique (영상처리를 통한 케이블의 진동 계측)

  • Kwak, Moon K.;Shin, Ji-Hwan;Koo, Jae R.;Bae, Yong-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.303-305
    • /
    • 2014
  • This paper is concerned with the vibration measurement of cable by image processing technique. The measurement system consists of a CCD camera and zoom lens. The image data can be transferred to PC via USB or IEEE1394 port. In this study, a Matlab program was made to process the acquired image data. After acquiring an image data for each frame, this data is binarized for tracing cable vibrations. Then the area occupied by the cable is marked by 1 and the background is covered by 0. In this way, we can calculate the displacement of the cable. Experimental results show that the tracing of cable displacements is possible and natural frequencies and mode shapes can be computed. The accuracy of the image processing system for vibration measurement depends on the maximum frame rate of the CCD camera. The use of a high-speed camera enables us to compute more higher modes. The laboratory experiments guarantee the vibration measurement of real transmission lines.

  • PDF

The Development Of An Image Stabilization System Using An Extended Kalman Filter Used In A Mobile Robot (모바일 로봇을 위한 Ekf이미지 안정화 시스템 개발)

  • Choi, Yun-Won;Saitov, Dilshat;Kang, Tae-Hun;Lee, Suk-Gyu
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.367-376
    • /
    • 2010
  • This Paper Proposes A Robust Image Stabilization System For A Mobile Robot Using An Extended Kalman Filter (Ekf). Though Image Information Is One Of The Most Efficient Data Used For Robot Navigation, It Is Subjected To Noise Which Is The Result Of Internal Vibration As Well As External Factors Such As Uneven Terrain, Stairs, Or Marshy Surfaces. The Camera Vibration Deteriorates The Image Resolution By Destroying The Image Sharpness, Which Seriously Prevents Mobile Robots From Recognizing Their Environment For Navigation. In This Paper, An Inclinometer Was Used To Measure The Vibration Angle Of The Camera System Mounted On The Robot To Obtain A Reliable Image By Compensating For The Angle Of The Camera Vibration. In Addition The Angle Prediction Obtained By Using The Ekf Enhances The Image Response Analysis For Real Time Performance. The Experimental Results Show The Effectiveness Of The Proposed System Used To Compensate For The Blurring Of The Images.

Vibration Characteristic Analysis of Gimbal Structure System with Observation Reconnaissance Camera Module (감시 정찰 카메라부를 포함한 짐발 구조 시스템의 진동 특성 해석)

  • Lee, Sang-Eun;Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.409-415
    • /
    • 2011
  • A gimbal system in observation reconnaissance aircraft was fabricated by assembling many parts and bearings. This system consists of a camera module and a stabilization gimbal that supports the camera module. During the flight for recording images, the gimbal system experiences various accelerations with wide frequencies. Although base excitation of stabilization gimbal results in vibration of the camera module, the camera module must be able to capture the correct and clear image even while vibrating. Hence, it is important to know the natural frequencies and vibration modes of the gimbal system with the camera module. Considering bearings as spring elements, the vibration characteristic of the gimbal system was analyzed by finite element method. In addition, harmonic response analysis was performed to determine the correct transmissibility of acceleration for the camera module in the frequency range of 0-500 Hz.

REFOCUSING FOR ON-ORBIT MTF COMPENSATION OF REMOTE SENSING CAMERA

  • Jang Hong-Sul;Jeong Dae-Jun;Lee Seunghoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.601-603
    • /
    • 2005
  • Refocusing methods are used to compensate optical performance degradation of high resolution satellite camera during on-orbit operation. Due to mechanical vibration during launch and thermal vacuum environment of space where camera is exposed, the alignment of optical system may have error. The focusing error is dominant of misalignment and caused by the de-space error of secondary mirror of catoptric camera, which is most sensitive to vibration and space environment. The high resolution camera of SPOT, Pleiades and KOMPSAT2 have refocusing device to adjust focusing during orbital operation while QuickBird of US does not use on orbit refocusing method. For the Korsch type optical configuration which is preferred for large aperture space remote sensing camera, secondary mirror and folding mirror are available as refocusing element.

  • PDF

A fast high-resolution vibration measurement method based on vision technology for structures

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Chae, Gyung-Sun;Park, Jae-Seok;Kim, Se-Oh
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.294-303
    • /
    • 2021
  • Various types of sensors are used at industrial sites to measure vibration. With the increase in the diversity of vibration measurement methods, vibration monitoring methods using camera equipment have recently been introduced. However, owing to the physical limitations of the hardware, the measurement resolution is lower than that of conventional sensors, and real-time processing is difficult because of extensive image processing. As a result, most such methods in practice only monitor status trends. To address these disadvantages, a high-resolution vibration measurement method using image analysis of the edge region of the structure has been reported. While this method exhibits higher resolution than the existing vibration measurement technique using a camera, it requires significant amount of computation. In this study, a method is proposed for rapidly processing considerable amount of image data acquired from vision equipment, and measuring the vibration of structures with high resolution. The method is then verified through experiments. It was shown that the proposed method can fast measure vibrations of structures remotely.

Experimental Analysis on Barrel Zoom Module of Digital Camera for Noise Source Identification and Noise Reduction (실험적 방법을 이용한 디지털 카메라 경통 줌 모듈의 소음원 규명 및 저소음화)

  • Kwak, Hyung-Taek;Jeong, Jae-Eun;Jeong, Un-Chang;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1074-1083
    • /
    • 2011
  • Noise of digital camera has been noticeable to its users. Particularly, noise of a barrel assembly module in zoom in/zoom out operation is recorded while taking a video. Reduction of barrel noise becomes crucial but there are not many studies on noise of digital camera due to its short history of use. In this study, experiment-based analyses are implemented to identify sources of noise and vibration because of complexity and compactness of the barrel system. Output noise is acquired in various operation conditions using synchronization for spectral analysis. Noise sources of a barrel assembly in zoom operating are first identified by the comparison with gear frequency analysis and then correlation analysis between noise and vibration is applied to confirm the generation path of noise. Analysis on noise transfer characteristic of zoom module is also carried out in order to identify the most contributing components. One of possible countermeasures of noise in zoom operating is investigated by an experimental approach.

Improvement of Dynamic Characteristics of an Optical Image Stabilizer in a Compact Camera (초소형 카메라 흔들림 보정장치의 동특성 개선)

  • Song, Myeong-Gyu;Son, Dong-Hun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 2011
  • Optical image stabilization is a device to compensate the camera movement in the exposure time. The compensation is implemented by movable lens or image sensor that adjusts the optical path to the camera movement. Generally, the camera is moved by a handshake, thus the handshake is considered as an external disturbance. However, there are many other vibrations such as car and train vibration. In this paper, the optical image stabilization system in high frequency region is presented. Notch filter and lead compensator are designed and applied to improve the stability without changing the actuator. To verify the performance of the optical image stabilization system in high frequency region, the experiment equipment with moving object is established. It is confirmed that the opticalimage stabilization system does not diverge at the resonance frequency.

Effect of Noise Reduction by Installation of a Point to Point Speed Camera (실측자료를 통한 구간단속카메라의 소음저감효과 분석)

  • Son, Jin Hee;Chun, Hyung-Joon;Choung, Tae Ryaug;Park, Young Min;Kim, Deuk Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.57-64
    • /
    • 2017
  • This study was reviewed the noise reduction effects with installation of 'point to point speed camera' for controlling the speed of the car. The multiple regression analysis was performed to know how the relationship between the noise level and these parameters, such as measured traffic volume and rate of heavy vehicle and weighted average speed was changed with and without the 'point to point speed camera'. In the analysis results shows that the less traffic volume, the more noise reduction effect has been increased and the more traffic volume, the more noise reduction effect has been reduced. And noise reduction effects by the 'point to point speed camera' was different from each measured point. The cause of the difference was determined that inadequate 'point to point speed camera' position to see the effect of noise reduction. It is determined to require a more study to improve the noise reduction effects of the 'point to point speed camera' such as the camera position adjustment.