To estimate structural displacement, a visually servoed paired structured light system (ViSP) was proposed in previous studies. The ViSP is composed of two sides facing each other, each with one or two laser pointers, a 2-DOF manipulator, a camera, and a screen. By calculating the positions of the laser beams projected onto the screens and rotation angles of the manipulators, relative 6-DOF displacement between two sides can be estimated. Although the performance of the system has been verified through various simulations and experimental tests, it has a limitation that the accuracy of the displacement measurement depends on the alignment of the laser pointers. In deriving the kinematic equation of the ViSP, the laser pointers were assumed to be installed perfectly normal to the same side screen. In reality, however, this is very difficult to achieve due to installation errors. In other words, the pose of laser pointers should be calibrated carefully before measuring the displacement. To calibrate the initial pose of the laser pointers, a specially designed jig device is made and employed. Experimental tests have been performed to validate the performance of the proposed calibration method and the results show that the estimated displacement with the initial pose calibration increases the accuracy of the 6-DOF displacement estimation.
본 논문은 온디바이스 환경에서 다중 시점 영상을 입력 받아 객체를 증강하고, 현실 공간에 의한 가려짐을 구현하는 딥러닝 기반의 증강현실 시스템을 제안한다. 이는 세부적으로 카메라 자세 추정, 깊이 추정, 객체 증강 구현의 세 기술적 단계로 나눠지며 각 기법은 온디바이스 환경에서의 최적화를 위해 다양한 모바일 프레임워크를 사용한다. 카메라 자세 추정 단계에서는 많은 계산량을 필요로 하는 특징 추출 알고리즘을 GPU 병렬처리 프레임워크인 OpenCL을 통해 가속하여 사용하며, 깊이 영상 추론 단계에서는 모바일 심층신경망 프레임워크 TensorFlow Lite를 사용하여 가속화된 단안, 다중 영상 기반의 깊이 영상 추론을 수행한다. 마지막으로 모바일 그래픽스 프레임워크 OpenGL ES를 활용해 객체 증강 및 가려짐을 구현한다. 제시하는 증강현실 시스템은 안드로이드 환경에서 GUI를 갖춘 애플리케이션으로 구현되며 모바일과 PC 환경에서의 동작 정확도 및 처리 시간을 평가한다.
본 논문에서는 지능형 무인 운송 시스템의 위치 인식 문제를 풀기 위한 방법으로, 실외 환경에서 보이는 건물 혹은 건물 입구의 상대적 위치와 자세 추정이 가능한 파티클 필터 기반 3 차원 물체 인식 방법을 제안한다. 제안하는 파티클 필터에 기반한 인식 시스템은 다양한 인식 증거들을 연속 영상에서 융합 및 모델 매칭을 함으로써 강인한 3 차원 물체 인식 및 자세 추정이 가능하다. 제안하는 방법은, 적합한 인식 증거들을 수집/선택하고, 다양한 인식 증거들로 부터 나타나는 인식 대상의 자세를 3 차원 공간상의 확률적인 파티클로 표현하며, 파티클 필터링을 통하여 연속 영상 상의 다양한 인식 증거들을 융합하는 것을 특징으로 한다. 스테레오 카메라를 이용한 실험을 통하여, 제안하는 방법이 실외 건물의 기하학적 특정을 인식 증거로 활용한 효율적인 3 차원 인식 및 자세 추정을 수행하는 것은 보여준다.
영상 기반의 모션 캡처에 대한 연구는 인체의 특징 영역 검출, 정확한 자세 추정 및 실시간 성능 등의 문제를 풀기 위해 많은 연구가 진행되고 있다. 특히, 인체의 많은 관절 정보를 복원하기 위해 다양한 방법이 제안되고 있다. 본 논문에서는 수치적인 역운동학 방법의 단점을 개선한 실시간 모션 캡처 방법을 제안한다. 기존의 수치적인 역운동학 방법은 많은 반복 연산이 필요하며, 국부최소치 문제가 발생할 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 기존의 수치적인 역운동학 해법과 UKF를 결합하여 중간관절을 복원하는 방법을 제안한다. 수치적인 역운동학의 해와 UKF를 결합함으로써, 중간 관절 추정 시 최적값에 보다 안정적이고 빠른 수렴이 가능하다. 모션 캡처를 위해 먼저, 배경 차분과 피부색 검출 방법을 이용하여 인체의 특징 영역을 추출한다. 다수의 카메라로부터 추출된 2차원 인체 영역 정보로부터 3차원 정보를 복원하고, UKF와 결합된 수치적인 역운동학 해법을 통해 동작자의 중간 관절 정보를 추정한다. 수치적인 역운동학의 해는 UKF의 상태 추정 시 안정적인 방향을 제시하고, UKF는 다수의 샘플을 기반으로 최적 상태를 찾음으로써, 전역해에 보다 빠르게 수렴한다.
본 논문은 단안 카메라로부터 입력된 영상에서 모션 기반의 검색을 사용한 동적인 사람 자세 추적 방법을 제안한다. 제안된 방법은 3차원 공간에서 하나의 사람 자세 후보를 생성하고, 생성된 자세 후보를 2차원 이미지 공간으로 투영하여, 투영된 사람 자세 후보와 입력 이미지와의 특징 값 유사성을 비교한다. 이 과정을 정해진 조건을 만족 할 때까지 반복하여 이미지와의 유사성과, 신체 부분간 연결성이 가장 좋은 3차원 자세를 추정한다. 제안된 방법에서는 입력 이미지에 적합한 3차원 자세를 검색할 때, 2차원 영상에서 추정된 신체 각 부분들의 모션 정보를 사용해 검색 공간을 정하고 정해진 검색 공간에서 탐색하여 사람의 자세를 추정한다. 2차원 이미지 모션은 비교적 높은 제약이 있어서 검색 공간을 의미있게 줄일 수 있다. 이 방법은 모션 추정이 검색 공간을 효율적으로 할당 해주고, 자세 추적이 여러 가지 다양한 모션에 적응할 수 있다는 장점을 가진다
레이저 거리센서와 비전 카메라의 정보를 융합하기 위해서는 두 센서 사이의 상대적인 위치관계를 설명하는 외부 파라미터를 정확하게 보정하는 것이 필수적이다. 본 논문에서는 레이저 거리센서와 카메라 좌표계 간의 외부 파라미터를 기존에 알려진 방법보다 쉬우면서도 정확하게 획득할 수 있는 새로운 보정 방법을 제안하고자 한다. 본 논문에서 제안한 방법의 접근법은 레이저 거리센서로 획득한 3차원 구조물의 모서리 정보를 영상으로 투영하였을 때 반드시 하나의 직선상에 존재해야 한다는 것을 제약조건으로 한다. 이러한 제약조건을 만족하는 3차원 기하모델을 제시하고 이 모델의 에너지 함수를 최소화하기 위한 수치적 해법을 소개한다. 또한 높은 정밀도의 보정을 위하여 레이저 거리정보 및 카메라 영상의 획득 과정에 대해서도 상세히 설명한다. 실험을 통해 제안된 방법의 성능이 기존의 방법에 비하여 보다 높은 정밀도를 보임을 확인할 수 있었다.
기존의 신체 인식 방법은 특수한 기기를 사용하거나 이미지로부터 영상처리를 통해 검출하는 방법들이 있다. 특수 기기를 사용할 경우 기기를 사용할 수 있는 환경이 제약되고 기기의 비용이 많이 든다는 단점이 있다. 카메라와 영상처리를 사용할 경우 환경의 제약과 비용이 낮아지는 장점이 있지만, 성능이 떨어진다. 이런 단점을 해결하기 위해 카메라와 합성 곱 심층 신경망을 사용한 신체 인식 방법들이 연구되었다. 합성 곱 심층 신경망의 성능을 올리기 위해 다양한 기법들이 제안되었다. 본 논문에서는 합성 곱 심층 신경망의 성능을 올리기 위한 기법 중 스킵 연결을 다양한 형태로 사용하여 스킵 연결이 손 검출 망에 끼치는 영향을 실험하였다. 실험을 통해 기본 스킵 연결 이외 추가적인 스킵 연결의 존재가 성능에 나은 영향을 끼치고 하향 스킵 연결만 추가된 망이 가장 나은 성능을 보임을 확인하였다.
이동하는 스마트폰이나 로봇의 단안 카메라를 이용하여 연속적으로 촬영된 이미지들을 분석하여 카메라의 위치를 추정하는 것은 메타버스나 이동 로봇, 사용자 위치 서비스에서 매우 중요하다. 지금까지는 PnP 관련 기술들을 적용하여 위치를 계산하였는데, 본 논문에서는 연속된 영상들에 적용된 에피폴라 기하학에서의 필수 행렬을 이용하여 카메라의 이동 방향을 구하고 기하학적인 수식 계산을 통해 카메라의 연속적인 이동 위치를 추정하는 방법을 새롭게 제안하였고, 시뮬레이션을 통해 그 정확성을 검증하였다. 이 방식은 기존의 방식과는 전혀 다른 방법으로 두 개 이상의 영상에서 하나 이상의 일치되는 특징점만 있어도 적용할 수 있는 특징이 있다.
증강현실을 구현하기 위해서는 카메라 포즈를 효율적, 효과적으로 계산할 수 있어야 하는데, 마커(marker)를 사용하는 방법(예, ARToolkit)이 널리 활용되고 있다. 그러나 마커를 사용하는 방법은 가려짐에 취약하다는 단점이 있다. 이러한 단점을 극복하기 위해 본 논문에서는 파티클 집단 최적화를 사용하여 현재 프레임에서의 카메라 포즈를 반복적으로 추정하는 하향식 방법을 제안한다. 실험을 통해 제안된 방법을 사용함으로써 심하게 가려진 마커에 대해서도 효과적으로 증강현실 구현이 가능함을 확인하였다.
Autonomous guided robot navigation which consists of following unknown paths and avoiding unknown obstacles has been a fundamental technique for unmanned robots in outdoor environments. The unknown path following requires techniques such as path recognition, path planning, and robot pose estimation. In this paper, we propose a novel sensor fusion system for autonomous guided robot navigation in outdoor environments. The proposed system consists of three monocular cameras and an array of nine infrared range sensors. The two cameras equipped on the robot's right and left sides are used to recognize unknown paths and estimate relative robot pose on these paths through bayesian sensor fusion method, and the other camera equipped at the front of the robot is used to recognize abrupt curves and unknown obstacles. The infrared range sensor array is used to improve the robustness of obstacle avoidance. The forward camera and the infrared range sensor array are fused through rule-based method for obstacle avoidance. Experiments in outdoor environments show the mobile robot with the proposed sensor fusion system performed successfully real-time autonomous guided navigation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.