• Title/Summary/Keyword: camera image

Search Result 4,887, Processing Time 0.038 seconds

Vergence control of horizontal moving axis stereo camera using lens focusing (수평 이동식 스테레오 카메라의 초점을 이용한 주시각 제어 연구)

  • 박순용;최영수;이용범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.403-406
    • /
    • 1996
  • In this paper, the geometry between horizontal and vertical movement of lens is studied for automatic vergence control of horizontal moving axis stereo camera. When the disparity of stereo remains contant, the horizontal movement of camera lens for image disparity and the vertical movement for image focus have linear geometry. Using this linearity, we can control the vergence of stereo camera only by focusing of stereo camera lens.

  • PDF

Smart Phone Based Image Processing Methods for Motion Detection of a Moving Object via a Network Camera (네트워크 카메라의 움직이는 물체 감지를 위한 스마트폰 기반 영상처리 방법)

  • Kim, Young Jin;Kim, Dong Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.65-71
    • /
    • 2013
  • In this work, new smart phone based moving target detection is proposed. In order to implement the task, methods of real time image transmission from network camera, motion detecting algorithm and its effective implementation are also addressed. The network camera transfers image data by MJPEG format which contains various information such as data and IP address, and the smart phone separates the image data received through a WiFi module. Later, the image data is converted to a Bitmap image format, and with the help of the embedded OpenCV library on a smart phone and algorithm, it was found that the moving object was identified effectively in terms of real time monitoring and detection.

3D image processing using laser slit beam and CCD camera (레이저 슬릿빔과 CCD 카메라를 이용한 3차원 영상인식)

  • 김동기;윤광의;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.40-43
    • /
    • 1997
  • This paper presents a 3D object recognition method for generation of 3D environmental map or obstacle recognition of mobile robots. An active light source projects a stripe pattern of light onto the object surface, while the camera observes the projected pattern from its offset point. The system consists of a laser unit and a camera on a pan/tilt device. The line segment in 2D camera image implies an object surface plane. The scaling, filtering, edge extraction, object extraction and line thinning are used for the enhancement of the light stripe image. We can get faithful depth informations of the object surface from the line segment interpretation. The performance of the proposed method has demonstrated in detail through the experiments for varies type objects. Experimental results show that the method has a good position accuracy, effectively eliminates optical noises in the image, greatly reduces memory requirement, and also greatly cut down the image processing time for the 3D object recognition compared to the conventional object recognition.

  • PDF

Parameter Calibration of Laser Scan Camera for Measuring the Impact Point of Arrow (화살 탄착점 측정을 위한 레이저 스캔 카메라 파라미터 보정)

  • Baek, Gyeong-Dong;Cheon, Seong-Pyo;Lee, In-Seong;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.76-84
    • /
    • 2012
  • This paper presents the measurement system of arrow's point of impact using laser scan camera and describes the image calibration method. The calibration process of distorted image is primarily divided into explicit and implicit method. Explicit method focuses on direct optical property using physical camera and its parameter adjustment functionality, while implicit method relies on a calibration plate which assumed relations between image pixels and target positions. To find the relations of image and target position in implicit method, we proposed the performance criteria based polynomial theorem model that overcome some limitations of conventional image calibration model such as over-fitting problem. The proposed method can be verified with 2D position of arrow that were taken by SICK Ranger-D50 laser scan camera.

Defects Length Measurement using an Estimation Algorithm of the Camera Orientation and an Inclination Angle of a Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup;Kang, E-Sok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1452-1457
    • /
    • 2004
  • In this paper, a method of measuring the length of defects on the wall and restructuring the defect image is proposed based on the estimation algorithm of a camera orientation which uses the declination angle of a laser slit beam. The estimation algorithm of the horizontally inclined angle of CCD camera adopts a 3-dimensional coordinate transformation of the image plane where both the laser beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect can be reconstructed to an image normal to the wall. From the result of a series of experiments, the measuring accuracy of the defect is measured within 0.5% error bound of real defect size under 30 degree of the horizontally inclined angle. The proposed algorithm provides the method of reconstructing the image taken at any arbitrary horizontally inclined angle to the image normal to the wall and thus, it enables the accurate measurement of the defect lengths only by using a single camera and a laser slit beam.

  • PDF

Defects Length Measurement Using an Estimation Agorithm of the Camera Orientation and an Inclination Angle of a Laser Slit Beam (레이저 슬릿 빔의 경사각과 카메라 자세 추정 알고리듬을 이용한 벽면결함 길이측정)

  • Kim, Young-Hwang;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • A method of measuring the length of defects on the wall and restructuring the defect image is proposed based on the estimation algorithm of a camera orientation, which uses the declination angle of a laser slit beam. The estimation algorithm of the horizontally inclined angle of CCD camera adopts a 3-dimensional coordinate transformation of the image plane where both the laser beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect can be reconstructed as an image normal to the wall. From the result of a series of experiments, the measuring accuracy of the defect is measured within 0.5% error bound of real defect size under 30 degree of the horizontally inclined angle. The proposed algorithm provides the method of reconstructing the image taken at any arbitrary horizontally inclined angle as the image normal as the wall and thus, it enables the accurate measurement of the defect lengths by using a single camera and a laser slit beam.

WALK-THROUGH VIEW FOR FTV WITH CIRCULAR CAMERA SETUP

  • Uemori, Takeshi;Yendo, Tomohiro;Tanimoto, Masayuki;Fujii, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.727-731
    • /
    • 2009
  • In this paper, we propose a method to generate a free viewpoint image using multi-viewpoint images which are taken by cameras arranged circularly. In past times, we have proposed the method to generate a free viewpoint image based on Ray-Space method. However, with that method, we can not generate a walk-through view seen from a virtual viewpoint among objects. The method we propose in this paper realizes the generation of such view. Our method gets information of the positions of objects using shape from silhouette method at first, and selects appropriate cameras which acquired rays needed for generating a virtual image. A free viewpoint image can be generated by collecting rays which pass over the focal point of a virtual camera. However, when the requested ray is not available, it is necessary to interpolate it from neighboring rays. Therefore, we estimate the depth of the objects from a virtual camera and interpolate ray information to generate the image. In the experiments with the virtual sequences which were captured at every 6 degrees, we set the virtual camera at user's choice and generated the image from that viewpoint successfully.

  • PDF

Fast non-local means noise reduction algorithm with acceleration function for improvement of image quality in gamma camera system: A phantom study

  • Park, Chan Rok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.719-722
    • /
    • 2019
  • Gamma-ray images generally suffer from a lot of noise because of low photon detection in the gamma camera system. The purpose of this study is to improve the image quality in gamma-ray images using a gamma camera system with a fast nonlocal means (FNLM) noise reduction algorithm with an acceleration function. The designed FNLM algorithm is based on local region considerations, including the Euclidean distance in the gamma-ray image and use of the encoded information. To evaluate the noise characteristics, the normalized noise power spectrum (NNPS), contrast-to-noise ratio (CNR), and coefficient of variation (COV) were used. According to the NNPS result, the lowest values can be obtained using the FNLM noise reduction algorithm. In addition, when the conventional methods and the FNLM noise reduction algorithm were compared, the average CNR and COV using the proposed algorithm were approximately 2.23 and 7.95 times better than those of the noisy image, respectively. In particular, the image-processing time of the FNLM noise reduction algorithm can achieve the fastest time compared with conventional noise reduction methods. The results of the image qualities related to noise characteristics demonstrated the superiority of the proposed FNLM noise reduction algorithm in a gamma camera system.

Camera Position Estimation in Castor Using Electroendoscopic Image Sequence (전자내시경 순차영상을 이용한 위에서의 카메라 위치 추정)

  • 이상경;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.49-56
    • /
    • 1991
  • In this paper, a method for camera position estimation in gasher using elechoendoscopic image sequence is proposed. In orders to obtain proper image sequences, the gasser in divided into three sections. It Is presented thats camera position modeling for 3D information extvac lion and image distortion due to the endoscopic lenses is corrected. The feature points are represented with respect to the reference coordinate system below 10 percents error rate. The faster distortion correction algorithm is proposed in this paper. This algorithm uses error table which is faster than coordinate transform method using n -th order polynomials.

  • PDF

Axial motion stereo method (로보트 팔에 부착된 카메라를 이용한 3차원 측정방법)

  • 이상용;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1192-1197
    • /
    • 1991
  • This paper describes a method of extracting the 3-D coordinates of feature points of an object from two images taken by one camera. The first image is from a CCD camera before approaching the object and the second image is from same camera after approaching the object along the optical axis. In the two images, the feature points appear at different position on the screen due to image enlargement. From the change of positions of feature points their world coordinates are calculated. In this paper, the correspondence problem is solved by image shrinking and correlation.

  • PDF