• Title/Summary/Keyword: calibrator

Search Result 107, Processing Time 0.022 seconds

Improvement of Uncertainty for Gravimetric Flow Calibrator (10톤 용량의 중량식 교정장치에 대한 불확도 개선)

  • Lee, Dong-Keun;Park, Joo-Young;Lee, Haeng-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1042-1046
    • /
    • 2008
  • Both the weighing bridge and the diverter system is a important component in achieving a high accuracy liquid flow rate standard using a static gravimetric method. The weighing bridge is a tank which weighing collected flow with a load cells. The diverter is a moving device used to direct flow alternately along its normal course(by pass) or towards the weighing tank. The time needed for collection into the weighing tank is measured using a timer. So it is important to the diversion period is sufficiently fast and triggering point of timer which is determined the filling time. On this studies show that the measurement deviation of load cell and uncertainty of diverter system for changing diversion speed and triggering point was estimated in accordance with Guide to The Expression of Uncertainty in Measurement(ISO).

  • PDF

Search for Very Fast Variability in AGN Radio Light Curves

  • Lee, Taeseok;Trippe, Sascha;Sohn, Bong Won;Lee, Sang-Sung;Byun, Do-Young;Oh, Junghwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2013
  • We present here the preliminary results of the fast variability of AGN radio light curves. The shortest time scale of minute in AGN light curves is needed to probe the AGN activity for a few reasons; First, to check if there is any kind of shortest time scale activity. Secondly, to find out what high frequency end of AGN spectra look like. For the last, to see the time delay at several wavelength bands and the change of the spectral index with time. The observation was conducted with three KVN(Korea VLBI Network) antennas with single dish cross scan mode. In order not to lose the target at any given time, whenever one station needs to observe the calibrator, the other station is on the target. Though the detailed data reduction is still going on, there might exist varying feature in the radio light curve. The more fine calibration will be done in near future and another good data set is ready for the reduction.

  • PDF

Intercomparison of Light Oil Flow Standard System for the Reliability of Measurement Accuracy (경질유 유량표준장치의 신뢰도 검증을 위한 측정정확도 비교)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.712-719
    • /
    • 2008
  • Light Oil Flow Standard System(LOFSS), as a national oil flow standard system, in Korea Research Institute of Standards and Science(KRISS) was developed for oil flowmeter calibration, and the expanded uncertainty of flow quantity determination was estimated within 0.04 %. In order to improve the reliability of the LOFSS measurement, a proficiency test was carried out in the flow range of 20 and $240\;m^3/h$ (Reynolds number $20,000{\sim}900,000$). A turbine flowmeter was used as a transfer package in round robin test. The water flow standard system of KRISS, the pipe prover of the national calibration and test organization and the master meter calibrator of the turbine flowmeter supplier, which used the different working fluid respectively, were compared with the turbine flowmeter measurement. The maximum difference of measurement was 0.15 % between the LOFSS and the pipe prover. The En numbers of the each system measurement were evaluated at the same Reynolds number. It was found that the En numbers were less than 1 in the comparison, which means the procedures of the uncertainty estimation of the each calibrators were reasonable and reliable.

KVN SOURCE-FREQUENCY PHASE-REFERENCING OBSERVATION OF 3C 66A AND 3C 66B

  • ZHAO, GUANG-YAO;JUNG, TAEHYUN;DODSON, RICHARD;RIOJA, MARIA;SOHN, BONG WON
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.629-631
    • /
    • 2015
  • In this proceedings, preliminary results of the KVN Source-Frequency Phase-Referencing (SFPR) observation of 3C 66A and 3C 66B are presented. The motivation of this work is to measure the core-shift of these 2 sources and study the temporal evolution of the jet opacity. Two more sources were observed as secondary reference calibrators and each source was observed at 22, 43, and 86 GHz simultaneously. Our preliminary results show that after using the observations at the lower frequency to calibrate those at the higher frequency of the same source, the residual visibility phases for each source at the higher frequencies became more aligned, and the coherence time became much longer; also, the residual phases for different sources, within 10 degrees angular separations, follow similar trends. After reference to the nearby calibrator, the SFPRed maps were obtained as well as the astrometric measurements, i.e. the combined coreshift. The measurements were found to be affected by structural blending effects because of the large beamsize of KVN, but this can be corrected with higher resolution maps (e.g. KAVA maps).

Measurement of Normal Spring Constant of Colloidal Probes for Atomic Force Microscope (원자 현미경용 콜로이드 탐침 수직 스프링 상수 측정)

  • Kim, Dae-Hyun;Kim, Min-Seok;Hahn, Junhee;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.212-217
    • /
    • 2012
  • A modified thermal noise method was proposed to measure the normal spring constants of the colloidal probes for an atomic force microscope. We used commercial tipless cantilevers (length 150, width 30, nominal k 7.4 N/m) and borosilicate spheres with a diameter of 20 to fabricate colloidal probes. The inverse optical lever sensitivity of both the tipless cantilever and colloidal probes were used to measure the normal spring constant of the colloidal probes. We confirmed the accuracy and usefulness of our method by comparing the measurement results with those obtained using the nanoforce calibrator (NFC), which reportedly has an uncertainty of 1.00%. The modified thermal method showed a good agreement (~10% difference) with the NFC, allowing us to conclude that the modified thermal method could be employed for the effective measurement of the normal spring constants of colloidal probes.

Development of 3-D Stereo PIV (3차원 스테레오 PIV 개발)

  • Kim Mi-Young;Choi Jang-Woon;Nam Koo-Man;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.19-22
    • /
    • 2002
  • A process of 3-D particle image velocimetry, called here, as '3-D stereo PIV' was developed for the measurement of a section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transfromation of oblique-angled image to transformed image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis of a section field of 3-D flow, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An experimental system was also used for the application of the proposed method. Three analog CCD cameras and an Argon-Ion Laser(300mW) for illumination were adopted to capture the wake flow behind a bluff obstacle.

  • PDF

Nano Force Metrology and Standards (나노 힘 측정 및 표준)

  • Kim M.S.;Park Y.K.;Choi J.H.;Kim J.H.;Kang D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.59-62
    • /
    • 2005
  • Small force measurements ranging from 1 pN to $100{\mu}N$, we call it Nano Force, become the questions of common interests of biomechanics, nanomechanics, material researches, and so on. However, unfortunately, quantitative and accurate force measurements have not been taken so far. This is because there ,are no traceable force standards and a calibration scheme. This paper introduces a quantitative force metrology, which provides traceable link to SI (International Systems of Units). We realize SI traceable force ranging from 1 nN to $100{\mu}N$ using an electrostatic balance and disseminate it through transfer standards, which are self-sensing cantilevers that have integrated piezoresistive strain gages. We have been built a prototype electrostatic balance and Nano Force Calibrator (NFC), which is an AFM cantilever calibration system. As a first experiment, we calibrated normal spring constants of commercial AFM cantilevers using NFC. Calibration results show that the spring constants of them are quite differ from each other and nominal values provided by a manufacturer (up to 240% deviation).

  • PDF

An Positioning Error Analysis of 3D Face Recognition Apparatus (3차원 안면자동인식기의 Positioning 오차분석)

  • Kwak, Chang-Kyu;Cho, Yong-Beum;Sohn, Eun-Hae;Yoo, Jung-Hee;Kho, Byung-Hee;Kim, Jong-Won;Kim, Kyu-Kon;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.2
    • /
    • pp.34-40
    • /
    • 2006
  • 1. Objectives We are going to develope 3D Face Recognition Apparatus to analyse the facial characteristics of the Sasangin. In the process, we should identify the recognition rate of the three dimensional position using this Apparatus. 2. Methods We took a photograph of calibrator($280{\times}400mm$) with interval of 20mm longitudinal direction of 10 times using 3D Face Recognition Apparatus. In the practice, we obtained 967 point to the exclusion of points deviating from the visual field of dual camera. And we made a comparison between measurement values and three dimensional standard values to calculate the errors. 3. Results and Conclusions In this test, the average error rate of X axis values was 0.019% and the maximum error rate of X axis values was 0.033%, the average error rate of Y axis values was 0.025% and the maximum error rate of Y axis values was 0.044%, the average error rate of Z axis values was 0.158% and the maximum error rate of Z axis values was 0.269%. This results exhibit much improvement upon the average error rate 1% and the maximum error rate 2.242% of the existing 3D Recognition Apparatus. In conclusion, we assessed that this apparatus was adaptable to abstract the facial characteristic point from three dimensional face shape in the mechanical aspects.

  • PDF

Operating Criteria of Core Exit Temperature in Nuclear Power Plant with using Channel Statistical Allowance (총채널 불확실도를 적용한 원전 노심출구온도의 운전가능 판정기준)

  • Sung, Je Joong;Joo, Yoon Duk;Ha, Sang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.166-171
    • /
    • 2014
  • Nuclear power plants are equipped with the reactor trip system (RTS) and the engineered safety features actuation system (ESFAS) to improve safety on the normal operation. In the event of the design basis accident (DBA), a various of post accident monitor(PAM)systems support to provide important details (e.g. Containment pressure, temperature and pressure of reactor cooling system and core exit temperature) to determine action of main control room (MCR). Operator should be immediately activated for the accident mitigation with the information. Especially, core exit temperature is a critical parameter because the operating mode converts from normal mode to emergency mode when the temperature of core exit reaches $649^{\circ}C$. In this study, uncertainty which was caused by exterior environment, characteristic of thermocouple/connector and accuracy of calibrator/indicator was evaluated in accordance with ANSI-ISA 67.04. The square root of the sum of square (SRSS) methodology for combining uncertainty terms that are random and independent was used in the synthesis. Every uncertainty that may exist in the hardware which is used to measure the core exit temperature was conservatively applied and the associative relation between the elements of uncertainty was considered simultaneously. As a result of uncertainty evaluation, the channel statistical allowance (CSA) of single channel of core exit temperature was +1.042%Span. The range of uncertainty, -0.35%Span ($-4.05^{\circ}C$) ~ +2.08%Span($24.25^{\circ}C$), was obtained as the operating criteria of core exit temperature.

Flow Signal Characteristics of Small Scale Electromagnetic Flowmeter in Low Conductivity Fluid Measurement (저전도율 유체 측정에서 소형 전자기유량계의 신호 특성)

  • Lim, Ki Won;Jung, Sung Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.613-620
    • /
    • 2016
  • In order to scrutinize the fluid conductivity effects on the electromagnetic flowmeter(EMF) characteristics, a small scale EMF was designed and fabricated. The measuring tube has a $3mm{\times}4mm$ rectangular cross-section, 9 mm length, and a $2mm{\times}3mm$ plate electrode and a ${\Phi}1.5mm$ point electrode. The design parameters, such as the magnetizing frequency and the number of coil turns, and the diameter were optimized. The EMF was tested with a gravimetric calibrator and showed good linearity in the range of 0 to $1.17{\times}10^{-5}m^3/s$. The fluid conductivity was varied between 3 and $11{\mu}S/cm$, and the magnitude of the flow signal was proportional to the fluid conductivity and the wetted area of the electrode. The design information and the test results provide flow measurement techniques for very low flowrate.