• Title/Summary/Keyword: calibrator

Search Result 107, Processing Time 0.022 seconds

KVNCS: 2. The Fringe Survey of New Candidates for VLBI Calibrators in the K Band

  • Jeong Ae Lee;Taehyun Jung;Bong Won Sohn;Do-Young Byun
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.159-168
    • /
    • 2023
  • The main goal of the Korean VLBI Network Calibrator Survey (KVNCS) is to expand the VLBI calibrators catalog for KVN, KaVA (KVN and VERA Array), EAVN (East-Asian VLBI Network), and other extended regions. The second KVNCS (KVNCS2) aimed to detect VLBI fringes of new candidates for calibrators in the K band. Out of the 1533 sources whose single-dish flux density in the K band was measured with KVN telescopes (Lee et al. 2017), 556 sources were observed with KVN in the K band. KVNCS2 confirmed the detection of VLBI fringes of 424 calibrator candidates over a single baseline. All detected sources had a high Signal-to-Noise Ratio (SNR) of >25. Finally, KVNCS2 confirmed 347 new candidates as VLBI calibrators in the K band, resulting in a 5% increase in the sky coverage compared to previous studies. The spatial distribution was quasi-uniform across the observable region (Dec. > -32.5°). In addition, the possibility as calibrator candidates for the detected sources was checked, using an analysis of the flux-flux relationship. Ultimately, the KVNCS catalog will not only become the VLBI calibrator list but is also useful as a database of compact radio sources for astronomical studies.

A SAW-less GPS RX Front-end using an Automatic LC Calibrator (자동변환 LC 캘리브레이터를 이용한 SAW 필터 없는 GPS RX 프론트앤드 구현)

  • Kim, Yeon-Bo;Moon, Hyunwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • In this paper, new automatic LC calibrator is proposed for realizing a passive LC filter with almost constant frequency characteristic regardless of the PVT variations. The SAW-less GPS RX front-end is implemented using a 65nm CMOS process using the proposed LC calibrator. Also, new dual-mode low noise amplifier (LNA) structure is proposed to generate the RF signal required for the LC calibrator. The characteristics of the implemented GPS RX front-end show the voltage gain of about 42.5 dB, noise figure of below 1.35 dB, the blocker input P1dB of -24 dBm in case of the worst blocker signal at 1710 MHz frequency, while it consumes 7 mA current at 1.2 V power supply voltage.

The Effect of Using Two Different Type of Dose Calibrators on In Vivo Standard Uptake Value of FDG PET (FDG 사용 시 Dose Calibrator에 따른 SUV에 미치는 영향)

  • Park, Young-Jae;Bang, Seong-Ae;Lee, Seung-Min;Kim, Sang-Un;Ko, Gil-Man;Lee, Kyung-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.115-121
    • /
    • 2010
  • Purpose: The purpose of this study is to measure F-18 FDG with two different types of dose calibrator measuring radionuclide and radioactivity and investigate the effect of F-18 FDG on SUV (Standard Uptake Value) in human body. Materials and Methods: Two different dose calibrators used in this study are CRC-15 Dual PET (Capintec) and CRC-15R (Capintec). Inject 1 mL, 2 mL, 3 mL of F-18 FDG into three 2 mL syringes, respectively, and measure initial radioactivity from each dose calibrator. Then measure and record radioactivity at 30 minute interval for 270 minutes. According to the initial radioactivity, linearity between decay factor driven from radioactive decay formula and the values measured by dose calibrator have been analyzed by simple linear regression. Fine linear regression line optimizing values measured with CRC-15 through regression analysis on the basis of the volume of which the measured value is close to the most ideal one in CRC-15 Dual PET. Create ROI on lung, liver, and region part of 50 persons who has taken PET/CT test, applying values from linear regression equation, and find SUV. We have also performed paired t-test to examine statistically significant difference in the radioactivity measured with CRC-15 Dual PET, CRC-15R and its SUV. Results: Regression analysis of radioactivity measured with CRC-15 Dual PET and CRC-15R shows results as follows: in the case 1 mL, the r statistic representing correlation was 0.9999 and linear regression equation was y=1.0345x+0.2601; in 2 mL case, r=0.9999, linear regression equation y=1.0226x+0.1669; in 3 mL case, r=0.9999, linear regression equation y=1.0094x+0.1577. Based on the linear regression equation from each volume, t-test results show significant difference in SUV of ROI in lung, liver, region part in all three case. P-values in each case are as follows: in 1 mL case, lung, liver and region (p<0.0001); in 2 mL case, lung (p<0.002), liver and region (p<0.0001); in 3 mL case, lung (p<0.044), liver and region (p<0.0001). Conclusion: Radioactivity measured with CRC-15 Dual PET, CRC-15R, dose calibrator for F-18 FDG test, do not show difference correlation, while these values infer that SUV has significant differences in the aspect of uptake in human body. Therefore, it is necessary to consider the difference of SUV in human body when using these dose calibrator.

  • PDF

Development of Dynamic Pressure Calibrator with Positive Step Pressure (정방향 스텝 동압력 교정장치 개발)

  • 최주호;홍성수;우삼용;이경희;김창복
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.155-169
    • /
    • 2001
  • In this paper, dynamic pressure is mainly generated in the closed chamber of gun when the propellant is fired and has exponential pressure motion. Dynamic pressure calibrator with positive step pressure was designed and manufactured to meet the calibration of piezoelectric high pressure transducers which are mainly used to measure dynamic pressure motion in the test of weapon systems. In addition, the results of Performance test and analysis of system uncertainty are provided.

  • PDF

Calibrator Survey for evolved stars using the KVN

  • Choi, Yoon Kyung;Wagner, Jan;Jung, Taehyun;Yun, Youngjoo;Cho, Se-Hyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.43.2-43.2
    • /
    • 2016
  • We present results of a calibrator search near twenty evolved stars using the Korean VLBI Network (KVN). Our evolved star targets include candidate sources for a Key Science Project (KSP) of the KVN. The KSP plans to investigate the spatial structure and dynamical effects between SiO and H2O maser regions including mass-loss process and development of asymmetry in circumstellar envelopes of evolved stars. For these purposes, we need compact and strong extragalactic sources close to the evolved stars. We carried out 5 observations in order to detect radio continuum sources that can be used for source frequency phase-referencing (SFPR) -based analysis. We observed 153 sources, out of which we detected 29 at 22 GHz and 20 at 43 GHz at signal-to-noise ratios higher than 50 at all baselines. Therefore, we successfully found target and calibrator pairs for the KVN KSP.

  • PDF

Uncertainty Evaluation of Dynamic Pressure Calibrator by Monte Carlo Simulation (몬테카를로 모사를 이용한 동압력 교정기 불확도 평가)

  • Kim, Moon-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.665-672
    • /
    • 2010
  • This paper describes Monte Carlo Simulation(MCS) to assess the uncertainty of dynamic pressure calibrator and the expanded uncertainty results that were compared by GUM approximation and MCS. MCS uncertainties were computed using defining a domain of possible inputs, generating inputs randomly using probability distribution, performing a deterministic computation repeatedly and aggregating the results. It was revealed that the expanded uncertainty between GUM and MCS was different from each other. the expanded uncertainties were 0.5366%, 0.4856%, respectively. MCS is a suitable method for determining the uncertainty of simple and complex measurement systems. It should be more widely used and studied in measurement uncertainty calculations.

Design of the broadband and compact phase-calibrator for array microphones (어레이 마이크로폰용 광대역 소형 위상교정기의 설계)

  • Ju, Hyeong-Sick;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1032-1035
    • /
    • 2004
  • Pressure distribution is measured by way microphones to identify noise sources in the space. For example, beam-forming method or acoustic holography use phase information to identify the source. Therefore, the phase is significant information to correctly identify the source position. However, due to the microphone characteristics and measuring systems, measured signals always have errors, which make the identification difficult. Therefore, phase calibration of microphones is needed. Duct and speaker systems are generally used as calibrators. Acoustic characteristics of the calibrator are, of course, functions of many Parameters of the system: i.e. duct size, frequency, and microphone spacing. In this paper, design parameters which effect on the performance and size of the calibrators are considered. Then the parameters would be applied to design and real product of the phase-calibrator.

  • PDF

A Study on the Tendency of Dose value According to Dose calibrator Measurement Depth and Volume (Dose calibrator 측정 깊이와 용량의 변화에 따른 선량 값의 성향에 대한 고찰)

  • Kim, Jin Gu;Ham, Jun Cheol;Oh, Shin Hyun;Kang, Chun Koo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Purpose It is intended to figure out the errors derived from changes in depth and volume when measuring the Standard source and 99mTc-pertechnetate by using a Dose calibrator. Then recommend appropriate measurement depth and volume. Materials and Methods As a Dose calibrator, CRC-15βeta and CRC-15R (Capintec, New Jersey, USA) was used, and the measurement sources were 57Co, 133Ba, 137Cs and 99mTc-pertechnetate was also adopted due to its high frequency of use. The Standard source was respectively measured the changes according to its depth without changing the volume, in a range of 0 cm to 15 cm from the bottom of the ion chamber. 99mTc-pertechnetate was measured at each depth by changing the volume with 0.1 mL, 0.3 mL, 0.5 mL, 0.7 mL and 0.9 mL Respectively. And the depth range was from 0 cm to 15 cm at the bottom of the ion chamber. Results In the case of Standard source 57Co, 133Ba, 137Cs and 99mTc-pertechnetate, there were significant differences according to the measurement depth(p<0.05). 99mTc-pertechnetate has a negative correlation coefficient according to the depth, and the error of the measured value was negligible at a depth from 0 cm to 7 cm at 0.3 mL and 0.5 mL, and the range of error increased as the volume increased. Conclusion In clinical practice, it is sometimes installed differently than the Standard depth recommended by the equipment company. If it's measured at the recommended depth and volume, it could be thought that unnecessary exposure of the operator and the patient will be reduced, and more accurate radiation exams will be possible in quantitative analysis.

A Study on the Uncertainty Estimation of Flowmeter Calibrator with Two Master Flowmeters (2개의 기준유량계를 이용한 유량계 교정장치의 측정불확도 평가에 관한 연구)

  • Choi Jong Oh;Lee Woan Kyu;Lim Ki Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1219-1230
    • /
    • 2004
  • Comparing to the gravimetric and volumetric method, the flowmeter calibration based on the master meter method is relatively economical and convenient, especially for high flowrate. The uncertainty of flow quantity and flowrate using the master meter method was evaluated according to the GUM (Guide to the Expression of Uncertainty in Measurement). In order to apply for the wider flow range, two master meters (electromagnetic flow meter) were employed as reference flowmeters. The uncertainty of the master meter was obtained by combining the statistical variation of the repeated measurements and the variation of fluid density and pipe material due to temperature and pressure changes were scrutinized. for a practical application, the uncertainty of calibrator, whose measuring capacity of 1000 ㎥/h obtained by employing two 500 ㎥/h electromagnetic How meters, was evaluated. The uncertainty budget shows the quantitative contribution of each uncertainty component to the overall uncertainty of the calibrator. As a result, it was found that the dominant uncertainties were from the master meter, which was evaluated statistically, and from the process of least squares fitting. On the contrary, the uncertainties arising from the variation of the fluid density and the pipe volume due to the temperature and pressure were negligible.

Application of FBG Sensors on a Cantilever Beam for Analyzing Behavior of Laterally Loaded Piles (실내 모형실험을 통한 수평재하 말뚝의 거동측정을 위한 FBG 센서의 적용성 평가)

  • Lee, Tae-Hee;Chung, Won-Seok;Jung, Young-Hoon;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.587-597
    • /
    • 2010
  • Analysis of the behavior of a laterally loaded pile is important in the design of critical civil structures. Recently, the electric strain gauge has been widely used to measure the strains along the pile. The electric strain gauge, due to lack of durability, is inappropriate in the use of long-term measurements. Herein, the feasibility of implementing the FBG sensor was investigated using a cantilever-type calibrator in laboratory. A special calibrating tool called "cantilever-calibrator" was used to calibrate the FBG sensors. The calibrator consists of a special calibration beam, a holding-clamp at one end of the beam, and a micrometer on the other end. Three FBG sensors were installed on the calibration beam. The strains measured by FBG sensors were compared with those calculated theoretically using cantilever beam theory. The calibration factor of FBG sensors were suggested to compensate the difference between measured and calculate strains.

  • PDF