• Title/Summary/Keyword: calibration sensitivity

Search Result 380, Processing Time 0.031 seconds

Calibration of the Pyranometer Sensitivity Using the Integrating Sphere

  • Kim, Bu-Yo;Lee, Kyu-Tae;Zo, Il-Sung;Lee, Sang-Ho;Jung, Hyun-Seok;Rim, Se-Hun;Jang, Jeong-Pil
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.639-648
    • /
    • 2018
  • The pyranometer for observing the solar radiation reaching the surface of the earth is manufactured by various companies around the world. The sensitivity of the pyranometer at the observatory is required to be properly controlled based on the reference value of the World Radiometric Center (WRC) and the observatory environment; otherwise, the observational data may be subject to a large error. Since the sensitivity of the pyranometer can be calibrated in an indoor or outdoor calibration, this study used a CSTMUSS-4000C Integrating Sphere by Labsphere Inc. (USA) to calibrate the sensitivity of CMP22 pyranometer by Kipp&Zonen Inc. (Netherlands). Consequently, the factory sensitivity of CMP22 was corrected from $8.68{\mu}V{\cdot}(Wm^{-2})^{-1}$ to $8.98{\mu}V{\cdot}(Wm^{-2})^{-1}$, and the result from the outdoor calibration according to the observatory environment was $8.90{\mu}V{\cdot}(Wm^{-2})^{-1}$. After the indoor calibration of the pyranometer sensitivity, the root mean square error (RMSE) of the observational data at the observatory on a clear day without clouds (July 13, 2017) was $7.11Wm^{-2}$ in comparison to the reference pyranometer. After the outdoor calibration of the pyranometer sensitivity based on these results, the RMSE of the observational data was $1.74Wm^{-2}$ on the same day. Periodic inspections are required because the decrease of sensitivity over time is inevitable in the pyranometer data produced at the observatory. The initial sensitivity after indoor calibration ($8.98{\mu}V{\cdot}(Wm^{-2})^{-1}$) is important, and the sensitivity after outdoor calibration ($8.90{\mu}V{\cdot}(Wm^{-2})^{-1})$ can be compared to the data at the Baseline Surface Radiation Network (BSRN) or can be used for various studies and daily applications.

POST-LAUNCH RADIOMETRIC CALIBRATION OF KOMPSAT2 HIGH RESOLUTION IMAGE

  • Yoon, Jong-Suk;Lee, Kyu-Sung;Chi, Jun-Hwa;Lee, Dong-Han
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.402-405
    • /
    • 2006
  • Radiometric calibration of optical image data is necessary to convert raw digital number (DN) value of each pixel into a physically meaningful measurement (radiance). To extract rather quantitative information regarding biophysical characteristics of the earth surface materials, radiometric calibration is often essential procedure. A sensor detects the radiation of sunlight interacted atmospheric constituents. Therefore, the amount of the energy reaching at the sensor is quite different from the initial amount reflected from the surface. To achieve the target reflectance after atmospheric correct, an initial step is to convert DN value to at-sensor radiance. A linear model, the simplest radiometric model, is applied to averaged spectral radiance for this conversion. This study purposes to analyze the sensitivity of several factors affecting on radiance for carrying out absolute radiometric calibration of panchromatic images from KOMPSAT2 launched at July, 2006. MODTRAN is used to calculate radiance at sensor and reflectance of target is measured by a portable spectro-radiometer at the same time the satellite is passing the target for the radiometric calibration. As using different contents of materials composing of atmosphere, the differences of radiance are investigated. Because the spectral sensitivity of panchromatic images of KOMPSAT2 ranges from 500 to 900 nm, the materials causing scattering in visible range are mainly considered to analyze the sensitivity. According to the verified sensitivity, direct measurement can be recommenced for absolute radiometric calibration.

  • PDF

Analysis of Measured Azimuth Error on Sensitivity Calibration Routine (Sensitivity Calibration 루틴 수행시 Tilt에 의한 방위각 측정 오차의 분석)

  • Woo, Kwang-Joon;Kang, Su-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The accuracy of MR sensor-based electronic compass is influenced by the temperature drift and DC offset of the MR sensor and the OP-amp, the magnetic distortion of nearby magnetic materials, and the compass tilt We design the 3-axis MR sensor and accelerometers-based electronic compass which is compensated by the set/reset pulse switching method on the temperature drift and DC offset, by the execution of hard-iron calibration routine on the magnetic distortion, and by the execution of the Euler rotational equation on the compass tilt. We qualitatively analyze the measured azimuth error on the execution of sensitivity calibration routine which is the normalization process on the different sensitivity of each MR sensor and the different gain of each op-amps. This compensation and analytic result make us design the one degree accuracy electronic compass.

Automatic and precise calibration of 4-channel cylindrical capacitive displacement sensor (4채널 원통형 정전용량 변위센서의 자동ㆍ정밀 검보정)

  • 김종혁;김일해;박만진;장동영;한동철;백영종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.387-393
    • /
    • 2004
  • General purpose of cylindrical capacitive displacement sensor(CCS) is measuring run-out motion and deflection of rotor. If CCS has narrow sensing range, its sensitivity coefficients must be calibrated precisely. And x, y component of CCS output can be coupled. In this research, CCS calibration procedure is automated with automatic calibration program and PC-controlled stage. And, coupled-terms of CCS signals were removed and the errors between measured position and mapped CCS signal were reduced obviously by sensitivity matrix that linearly.

  • PDF

Lateral Force Calibration in Liquid Environment using Multiple Pivot Loading (Multiple Pivot loading 방법을 이용한 액체 환경에서의 수평방향 힘 교정)

  • Kim, Lyu-Woon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Quantifying the nanoscale force between the atomic force microscopy (AFM) probe of a force-sensing cantilever and the sample is one of the challenges faced by AFM researchers. The normal force calibration is straightforward; however, the lateral force is complicated due to the twisting motion of the cantilever. Force measurement in a liquid environment is often needed for biological applications; however, calibrating the force of the AFM probes for those applications is more difficult owing to the limitations of conventional calibration methods. In this work, an accurate nondestructive lateral force calibration method using multiple pivot loading was proposed for liquid environment. The torque sensitivity at the location of the integrated probe was extrapolated based on accurately measured torque sensitivities across the cantilever width along a few cantilever lengths. The uncertainty of the torque sensitivity at the location of the integrated tip was about 13%, which is significantly smaller than those for other calibration methods in a liquid environment.

Precision Phase Calibration System of Accelerometers (가속도계 정밀 위상 교정 시스템)

  • Lee, Yang-Bong;Jung, Sung-Soo;Jin, Jong-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.585-590
    • /
    • 2011
  • Accelerometers have been exploited widely in various fields from monitoring vibration of precision machines to detecting an earthquake wave. The precision calibration of the accelerometers is required to maintain the measurement reliability when measuring the vibration of objects with accelerometers for modal analysis. Among evaluation factors for determining sensitivity of accelerometers, phase delay term should be also considered for accurate calibration. In this paper, a new calibration system of accelerometers capable of measuring phase delay as well as magnitude of its sensitivity was proposed and realized in the frequency range of 20 Hz to 5 kHz.

Investigation on the Improvement of Computer Aided Calibration Methods for Hot-Wire and Hot Film Probes (컴퓨터원용 열선 및 열필름 프로브의 교정방법 개선에 대한 연구)

  • 김경천;윤순현;신영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.977-985
    • /
    • 1994
  • New computer-aided calibration methods for the hot-wire and split film probes are presented. The proposed modified king's law takes into account instantaneous flow angle as well as the variation of calibration coefficients due to the total velocity magnitude change. It is found that the look-up table method has many advantages with respect to the accuracy on data and reducing run time for calibration over other conventional methods. In order to investigate the local sensitivity of the static calibration, a dynamic calibration procedure is also carried out.

Sensitivity Analysis and Parameter Estimation of Activated Sludge Model Using Weighted Effluent Quality Index (가중유출수질지표를 이용한 활성오니공정모델의 민감도 분석과 매개변수 보정)

  • Lee, Won-Young;Kim, Min-Han;Kim, Young-Whang;Lee, In-Beum;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1174-1179
    • /
    • 2008
  • Many modeling and calibration methods have been developed to analyze and design the biological wastewater treatment process. For the systematic use of activated sludge model (ASM) in a real treatment process, a most important step in this usage is a calibration which can find a key parameter set of ASM, which depends on the microorganism communities and the process conditions of the plants. In this paper, a standardized calibration protocol of the ASM model is developed. First, a weighted effluent quality index(WEQI) is suggested far a calibration protocol. Second, the most sensitive parameter set is determined by a sensitive analysis based on WEQI and then a parameter optimization method are used for a systematic calibration of key parameters. The proposed method is applied to a calibration problems of the single carbon removal process. The results of the sensitivity analysis and parameter estimation based on a WEQI shows a quite reasonable parameter set and precisely estimated parameters, which can improve the quality and the efficiency of the modeling and the prediction of ASM model. Moreover, it can be used for a calibration scheme of other biological processes, such as sequence batch reactor, anaerobic digestion process with a dedicated methodology.

Application of the QUAL2Kw model to a Polluted River for Automatic Calibration and Sensitivity Analysis of Genetic Algorithm Parameters (오염하천의 자동보정을 위한 QUAL2Kw 모형의 적용과 유전알고리즘의 매개변수에 관한 민감도분석)

  • Cho, Jae-Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.357-365
    • /
    • 2011
  • The QUAL2K has the same basic characteristics as the QUAL2E model, which has been widely used in stream water quality modeling; in QUAL2K, however, various functions are supplemented. The QUAL2Kw model uses a genetic algorithm(GA) for automatic calibration of QUAL2K, and it can search for optimum water quality parameters efficiently using the calculation results of the model. The QUAL2Kw model was applied to the Gangneung Namdaecheon River on the east side of the Korean Peninsula. Because of the effluents from the urban area, the middle and lower parts of the river are more polluted than the upper parts. Moreover, the hydraulic characteristics differ between the lower and upper parts of rivers. Thus, the river reaches were divided into seven parts, auto-calibration for the multiple reaches was performed using the function of the user-defined automatic calibration of the rates worksheets. Because GA parameters affect the optimal solution of the model, the impact of the GA parameters used in QUAL2Kw on the fitness of the model was analyzed. Sensitivity analysis of various factors, such as population size, crossover probability, crossover mode, strategy for mutation and elitism, mutation rate, and reproduction plan, were performed. Using the results of this sensitivity analysis, the optimum GA parameters were selected to achieve the best fitness value.