• Title/Summary/Keyword: calibration of deflection

Search Result 25, Processing Time 0.023 seconds

Feasibility Study on Calibration Method of Curling Behavior in Jointed Concrete Pavement Using Falling Weight Deflectometer (FWD를 이용한 줄눈 콘크리트포장 컬링거동 보정방법의 타당성 연구)

  • Yoo Tae-Seok;Lee Jae-Hoon
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.155-162
    • /
    • 2006
  • Deflections of jointed concrete pavements at test road are monitored during 48 hours. And methods of calibration with respect to curling deflections are suggested. Relations between deflection ratio of center to joint at test time and deflection ratio of center at test time to center at reference time are described by regression. From deflections at test time, deflections transformed to reference time which gives minimum deflections in a day are estimated through regression curves and concluded to propose as a alternative method of curling calibration with more data accumulation.

  • PDF

Development of a software based calibration system for automobile assembly system oriented AR (자동차 조립시스템 지향 AR을 위한 소프트웨어 기반의 캘리브레이션 시스템 개발)

  • Park, Jin-Woo;Park, Hong-Seok
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Many automobile manufacturers are doing experiment on manufacturing environments by using an augmented reality technology. However, system layout and process simulation by using the virtual reality technology have been performed actively more than by using the augmented reality technology in practical use so far. Existing automobile assembly by using the augmented reality requires the precise calibrating work after setting the robot because the existing augmented reality system for the automobile assembly system configuration does not include the end tip deflection and the robot joints deflection due to the heavy weight of product and gripper. Because the robot is used mostly at the automobile assembly, the deflection problem of the robot joint and the product in the existing augmented reality system need to be improved. Moreover camera lens calibration has to be performed precisely to use augmented reality. In order to improve this problem, this paper introduces a method of the software based calibration to apply the augmented reality effectively to the automobile assembly system. On the other hand, the camera lens calibration module and the direct compensation module of the virtual object displacement for the augmented reality were designed and implemented. Furthermore, the developed automobile assembly system oriented AR-system was verified by the practical test.

Quantitative Lateral Force Calibration of V-shaped AFM Cantilever (V 형상을 가지는 원자현미경 Cantilever의 정량적 마찰력 교정)

  • Lee, Huijun;Kim, Kwanghee;Kim, Hyuntae;Kang, Boram;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.203-211
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used as a tool, not only for imaging surfaces, but also for measuring surface forces and mechanical properties at the nano-scale. Force calibration is crucial for quantitatively measuring the forces that act between the AFM probe of a force sensing cantilever and a sample. In this work, the lateral force calibrations of a V-shaped cantilever were performed using the finite element method, multiple pivot loading, and thermal noise methods. As a result, it was shown that the multiple pivot loading method was appropriate for the lateral force calibration of a V-shaped cantilever. Further, through crosschecking of the abovementioned methods, it was concluded that the thermal noise method could be used for determining the lateral spring constants as long as the lateral deflection sensitivity was accurately determined. To obtain the lateral deflection sensitivity from the sticking portion of the friction loop, the contact stiffness should be taken into account.

Automatic and precise calibration of 4-channel cylindrical capacitive displacement sensor (4채널 원통형 정전용량 변위센서의 자동ㆍ정밀 검보정)

  • 김종혁;김일해;박만진;장동영;한동철;백영종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.387-393
    • /
    • 2004
  • General purpose of cylindrical capacitive displacement sensor(CCS) is measuring run-out motion and deflection of rotor. If CCS has narrow sensing range, its sensitivity coefficients must be calibrated precisely. And x, y component of CCS output can be coupled. In this research, CCS calibration procedure is automated with automatic calibration program and PC-controlled stage. And, coupled-terms of CCS signals were removed and the errors between measured position and mapped CCS signal were reduced obviously by sensitivity matrix that linearly.

  • PDF

Kinematic Calibration Method for Redundantly Actuated Parallel Mechanisms (여유구동 병렬기구의 기구학적 보정)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • To calibrate a non-redundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism's kinematic structure and measurement values. However, the calibration algorithm for a non-redundant case does not apply fur a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm fir a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

  • PDF

Compensation of Pseudo Gyro Bias in SDINS (SDINS에서 의사 자이로 바이어스 보상 기법)

  • Jungmin Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • The performance of a Strapdown Inertial Navigation System (SDINS) relies heavily on the accuracy of sensor error calibration. Systematic calibration is usually employed when only a 2-axis turntable is available. For systematic calibration, the body frame is commonly defined with respect to sensor axes for ease of computation. The drawback of this approach is that sensor axes may undergo time-varying deflection under temperature change, causing pseudo gyro bias. The effect of pseudo gyro bias on navigation performance is negligible for low grade navigation systems. However, for higher grade systems undergoing rapid temperature change, the error is no longer negligible. This paper describes in detail conditions leading to the presence of pseudo gyro bias, and proposes two techniques for mitigating the error. Experimental results show that applying these techniques improves navigation performance for precision SDINS, especially under rapid temperature change.

Lateral Force Calibration of Colloidal Probe in Liquid Environment Using Reference Cantilever (기준 외팔보를 이용한 액체 환경에서 Colloidal Probe의 수평방향 힘 교정)

  • Je, Youngwan;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • There is an indispensable need for force calibration for quantitative nanoscale force measurement using atomic force microscopy. Calibrating the normal force is relatively straightforward, whereas doing so for the lateral force is often complicated because of the difficulty in determining the optical lever sensitivity. In particular, the lateral force calibration of a colloidal probe in a liquid environment often has a larger uncertainty as a result of the effects of the epoxy, the location of the colloidal particle on the cantilever, and a decrease in the quality factor. In this work, the lateral force of a colloidal probe using a reference cantilever with a known spring constant was calibrated in a liquid environment. By obtaining the spring constant and the lateral sensitivity at the equator of a spherical colloidal particle, the damage to the bottom surface of the colloidal particle could be eliminated. Further, it was shown that the effect of the contact stiffness on the determination of the lateral spring constant of the cantilever could be minimized. It was concluded that this method can be effectively used for the lateral force calibration of a colloidal probe in a liquid environment.

Analysis of partially embedded beams in two-parameter foundation

  • Akoz, A.Yalcin;Ergun, Hale
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, Pasternak foundation model, which is a two parameter foundation model, is used to analyze the behavior of laterally loaded beams embedded in semi-infinite media. Total potential energy variation of the system is written to formulate the problem that yielded the required field equations and the boundary conditions. Shear force discontinuities are exposed within the boundary conditions by variational method and are validated by photo elastic experiments. Exact solution of the deflection of the beam is obtained. Both foundation parameters are obtained by self calibration for this particular problem and loading type in this study. It is shown that, like the first parameter k, the second foundation parameter G also depends not only on the material type but also on the geometry and the loading type of the system. On the other hand, surface deflection of the semi infinite media under singular loading is obtained and another method is proposed to determine the foundation parameters using the solution of this problem.

Modelling and Measurements of Normal and Lateral Stiffness for Atomic Force Microscopy

  • Choi, Jinnil
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.240-247
    • /
    • 2014
  • Modelling and measurements of normal and lateral stiffness for atomic force microscopy (AFM) are presented in this work. Important issues, such as element discretisation, stiffness calibration, and deflection angle are explored using the finite element (FE) model. Elements with various dimension ratios are investigated and comparisons with several mathematical models are reported to verify the accuracy of the model. Investigation of the deflection angle of a cantilever is also shown. Moreover, AFM force measurement experiments with conical and colloid probe tips are demonstrated. The relationships between force and displacement, required for stiffness measurement, in normal and lateral directions are acquired for the conical tip and the limitations of the colloid probe tip are highlighted.

Design and Calibration of Acousto-Optic Tunable Filter(AOTF) for Near Infrared Spectral Analysis (근적외선 분광 분석을 위한 음향광학변조필터의 설계 및 교정)

  • You, Jang-Woo;Kim, Dae-Suk;Kwak, Yoon-Keun;Kim, Soo-Hyun;Lee, Yun-Woo;Hwang, In-Duk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1697-1702
    • /
    • 2004
  • In this paper, we proposed the design and calibration method for the near infrared Acousto-Optic Tunable Filter (AOTF). The theory and design principles of AOTF for the visible light are well known since I.C.Chang has developed the parallel tangent condition for the non-collinear AOTF. Deflection angle, frequency-wavelength relation, spectral resolution, etc. were calculated based on the theory of AOTF. From this result, important parameters - incident and acoustic angle - to fabricate AOTF were decided. We measured the spectral resolution and the relation between electrical driving frequency and the Optical wavelength of diffracted light to calibrate the near infrared AOTF. About 40 ∼ 80 MHz electrical frequency was required to get 1200 ∼ 2200 nm near infrared light. Spectral resolution was less than 10 nm in the near infrared region.