• Title/Summary/Keyword: calibration errors

Search Result 449, Processing Time 0.021 seconds

An RSS-Based Localization Scheme Using Direction Calibration and Reliability Factor Information for Wireless Sensor Networks

  • Tran-Xuan, Cong;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.45-61
    • /
    • 2010
  • In the communication channel, the received signal is affected by many factors that can cause errors. These effects mean that received signal strength (RSS) based methods incur more errors in measuring distance and consequently result in low precision in the location detection process. As one of the approaches to overcome these problems, we propose using direction calibration to improve the performance of the RSS-based method for distance measurement, and sequentially a weighted least squares (WLS) method using reliability factors in conjunction with a conventional RSS weighting matrix is proposed to solve an over-determined localization process. The proposed scheme focuses on the features of the RSS method to improve the performance, and these effects are proved by the simulation results.

Identification and Correction of Microlens-array Error in an Integral-imaging-microscopy System

  • Imtiaz, Shariar Md;Kwon, Ki-Chul;Alam, Md. Shahinur;Hossain, Md. Biddut;Changsup, Nam;Kim, Nam
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.524-531
    • /
    • 2021
  • In an integral-imaging microscopy (IIM) system, a microlens array (MLA) is the primary optical element; however, surface errors impede the resolution of a raw image's details. Calibration is a major concern with regard to incorrect projection of the light rays. A ray-tracing-based calibration method for an IIM camera is proposed, to address four errors: MLA decentering, rotational, translational, and subimage-scaling errors. All of these parameters are evaluated using the reference image obtained from the ray-traced white image. The areas and center points of the microlens are estimated using an "8-connected" and a "center-of-gravity" method respectively. The proposed approach significantly improves the rectified-image quality and nonlinear image brightness for an IIM system. Numerical and optical experiments on multiple real objects demonstrate the robustness and effectiveness of our proposed method, which achieves on average a 35% improvement in brightness for an IIM raw image.

Calibration Technology for Precise Alignment of Large Flat Panel Displays (대형 평판 디스플레이의 정밀 정렬을 위한 캘리브레이션 기술)

  • Hong, Jun-Ho;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.100-109
    • /
    • 2022
  • In this study, calibration technology that increases the alignment accuracy in large flexible flat panels was studied. For precise of calibration, a systematization of the calibration algorithm was established, and a calibration correction technique was studied to revise calibration errors. A coordinate systems of camera and UVW stage was established to get the global position of the mark, and equations for translational and rotational calibration were systematically derived based on geometrical analysis. Correction process for the calibration data was carried, and alignment experiments were performed sequentially in cases of the presence or absence of calibration-correction. Alignment results of both calibration correction and non-calibration correction showed accuracy performance less than 1㎛. On the other hand, the standard deviation in calibration-correction is smaller than non-calibration correction. Therefore, calibration correction showed improvement of the alignment repeatability.

Three Degrees of Freedom Global Calibration Method for Measurement Systems with Binocular Vision

  • Xu, Guan;Zhang, Xinyuan;Li, Xiaotao;Su, Jian;Lu, Xue;Liu, Huanping;Hao, Zhaobing
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.107-117
    • /
    • 2016
  • We develop a new method to globally calibrate the feature points that are derived from the binocular systems at different positions. A three-DOF (degree of freedom) global calibration system is established to move and rotate the 3D calibration board to an arbitrary position. A three-DOF global calibration model is constructed for the binocular systems at different positions. The three-DOF calibration model unifies the 3D coordinates of the feature points from different binocular systems into a unique world coordinate system that is determined by the initial position of the calibration board. Experiments are conducted on the binocular systems at the coaxial and diagonal positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.573 mm, 0.520 mm and 0.528 mm at the coaxial positions. The experimental root-mean-square errors between the true and reconstructed 3D coordinates of the feature points are 0.495 mm, 0.556 mm and 0.627 mm at the diagonal positions. This method provides a global and accurate calibration to unity the measurement points of different binocular vision systems into the same world coordinate system.

Measuring Automation System for Analysis of Dimensional Reationships On the Machine (상관관계 해석을 고려한 온 더 머신 자동측정 시스템)

  • 정성종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.183-187
    • /
    • 1996
  • On the machine measuring system composed of touch trigger probes, a DNC module, a CMM module, an analysis module and a man-machine interface unit was developed. Measuring accuracy is affected by working accuracy of the on the machine measuring system. The working accuracy of the system is due to geometric errors of th machine tool, servo errors of feed drives and positioning errors of probes. In order to compensate for the measuring errors due to the working accuracy, a calibration module was developed. The measuring automation system was realized with the on the machine measuring system and an IBM-PC on the machine center through a RS-232C. It turns the machining machine (CMM). The system is used for dimensional checking of machined components. initial job setup, part identification, identification of machining errors due to deflection and wear of tools. cutter run out, and calibration of machine tools. A horizontal machining center equipped with FANUC OMC wre used for verification of the system. The validity and reliability of the system. The validity and reliability of the system were confirmed through a series of experiments with gage blocks, ring gages, comparison measurement with a commercial CMM, and so on.

  • PDF

Error correction in laser scanner 3D measurement (레이저 스캐너 3차원 계측에 있어서의 오차 보정)

  • 김응규
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.94-101
    • /
    • 1996
  • When objects are scanned spatially by a laser-beam and mechanical mirror scanners, spatial information can be obtained, and then it is improtant to accurately obtain the parameters relating the light source and camera positions, etc.. In this paper, a calibration technique is presented for correction of measuremtn errors in a three-dimensional laser scanner system with two galvanometers. First, a model of the systematic errors is developed based on the geometry of the scanning system. Calibration parameter values are then iteratively adjusted with coarse-fine search in order to minimize errors (evaluation function) between measured and computed distances. It is shown that this correction method results in measurement precision suitable for practical use.

  • PDF

A Note on the Small-Sample Calibration

  • So, Beong-Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.2
    • /
    • pp.89-97
    • /
    • 1994
  • We consider the linear calibration model: $y_1={\alpha}+{\beta}x_i+{\sigma}{\varepsilon}_i$, i = 1, ${\cdots}$, n, $y={\alpha}+{\beta}x+{\sigma}{\varepsilon}$ where ($y_1$, ${\cdots}$, $y_n$, y) stands for an observation vector, {$x_i$} fixed design vector, (${\alpha}$, ${\beta}$) vector of regression parameters, x unknown true value of interest and {${\varepsilon}_i$}, ${\varepsilon}$ are mutually uncorrelated measurement errors with zero mean and unit variance but otherwise unknown distributions. On the basis of simple small-sample low-noise approximation, we introduce a new method of comparing the mean squared errors of the various competing estimators of the true value x for finite sample size n. Then we show that a class of estimators including the classical and the inverse estimators are consistent and first-order efficient within the class of all regular consistent estimators irrespective of type of measurement errors.

  • PDF

The enhancement of 3-dimensional positioning accuracy by measuring error factors for CNC machine tools (공작기계의 오차요소 측정을 통한 3차원 위치정밀도 향상)

  • 손진욱;서석환;정세용;이응석;위현곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.260-265
    • /
    • 1994
  • Efforts have been devoted to developing rapid and accurate methods for measuring the errors of machine tools. The method os measurement and calibration of machine tool errors should be general and efficient. The objective of this study is to show in detail the full sequence from the measurement of errors factors to the verification of the positioning accuracy after compensation for the volumetric error. In this paper, we described the steps in measuring the volumetric error parameters, a general error model composed of error parameters, temperature, and the desired position. The validity of the error calibration methods proposed in this paper was tested using a vertical 3-axis CNC machine with a laser interferometer and a ball bar.

  • PDF

Calibration of Airborne LiDAR data using Natural Topography (자연지형을 이용한 항공 LiDAR 데이터의 보정)

  • 이임평;최윤수;박지혜;김경옥
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.473-478
    • /
    • 2004
  • LIDAH data often include systematic errors, which should be removed by a calibration process. This paper proposes a robust approach to calibrating LIDAR data using natural surfaces as reference data. The uniqueness of this approach is to employ a sophisticated selection scheme so that only a portion of LIDAR points can be used to estimate the bias parameters generating the systematic errors. This approach was applied to calibrating simulated LIDAR data. The results show that the approach can successfully recover the bias parameters and calibrate the data with acceptable RMS errors. Particularly, the parameter recovery model can be easily extended to register image data with LIDAR data.

  • PDF

Self-Compensation of PZT Errors in White Light Scanning Interferometry

  • Kang, Min-Gu;Lee, Sang-Yoon;Kim, Seong-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.35-40
    • /
    • 1999
  • One of main error sources in white light scanning interferometry is the inaccuracy of scanning mechanisms in that PZT(piezoelectric transducer) micro-actuators are preferably used. We propose a new calibration method that is capable of identifying actual scanning errors directly by analyzing the spectral distribution of sampled interferograms. This calibration provides an effective means of self-compensation for the non-linearity errors caused by PZT hysteresis, enhancing the measurement uncertainty to a level of 5 nanometers over an entire measuring range of 100 ${\mu}{\textrm}{m}$.