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Abstract
We consider the linear calibration model: v, =a +8x, +o&,i=1, .-, 5, yv=a +fx
+o& where (y,, -+, v,, y) stands for an observation vector, {x,| fixed design

vector, {a, B) vector of regression parameters, ¥ unknown frue value of interest
and { &}, € are mutually uncorrelated measurement errors with zero mean and unit
variance but otherwise wmknown distributions. On the basis of simple smal!-
sample low-noise approximation, we introduce a new method of comparing the
mean squared errors of the various competing estimators of the true value x for
finite sample size ». Then we show that a class of estimators including the
classical and the inverse estimators are consistent and first-order efficient within
the class of all regular consistent estimators irrespective of type of measurement

errors.

1. Introduction

We consider the following linear calibration model :

y, = a+px %) toe,i=1 - n ‘1.1

=a+fix-%) tae

(o)

where | .|, y represent observations of the response variable, { x;} known values of
the variable of interest with x = }:} x;/n, (a, B) vector of regression parameters, x
unknown true value of interest and ¢!, & are mutually uncorrelated measurement
errors with zero mean and unit variance but otherwise unknown distributions. In
the typical calibration problem, we are mainly interested in the prediction of new x
value of the variable of interest on the basis of both the current y value and the
previous test data (v, x,}, i=1, ---, n with exactly known x, values.
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In the literature two different methods of estimation were proposed in order to
make an inference about x. As is well known, the classical least squares methoc
minimizes the y residuals and yields as estimates of the parameters («, §) :

ET = }a l} N Sx\, 'Su

where x=Y x,/n. 3= y/n and S, =Y (x,—x)(3 -9, S. =% (x —x)".
=] IR 3

[ (S

Then the classical estimator x of x is defined by :
=X +y-a)f =% +(S./S. ) (y=). (1.2

On the othe hand several authors including Krutchkoff (1967), Hoadley (1972},
Hunter and Lamboy (1981) among others advocated to use the inverse regression
procedure of minimizing x residuals as an alternative to (1.2) which vields the so-
called inverse estimator x of x :

¥ =x+(S./5,(y=3). (1.3)

Historically, the discussion in the literature on how to make valid inference
about x has been characterized by the disagreement and confusion. Well-known
controversy between the two estimators was motivated by the considerations of
consistency and mean squared errors of the estimators. Specifically, under the
usual normal error model, the classical estimator is supported by the maximum
likelihood (ML, approach and thus is typically consistent and asymptotically
efficient as »-—x . But it has infinite mean squared error (MSE) for finite sample
size »n as is noted by Williams (1969:. While the inverse estimator has a Bayesian
justification as is shown by Hoadley (1972}, Hunter and Lamboy (1981) and it has
typically smaller MSE than the classical estimator in the region of interest. But,
as noted by Berkson (1967) and Shukla (1972}, it is known to be generally biased
and is not consistent as #— .

But we note that most of previous works in this area were based on the /arge-
sample approximation to the biases and MSEs of the competing estimators. Thus
they are mainly of only academic interest because, for practical purposes,
calibration errors are often small and thus sample size needs not be very large but
is typically small in practice as is emphasized by most of practioners of the
real calibration work. See the comment by Rosenblatt and Spiegelman in the
discussion of Hunter and Lamboy {1981).
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In this paper, motivated by the above consideration, we reconsider the practical
calibration problem from the small-sample low-noise viewpoint and try to throw
the new light on the issues such as comsistency and efficiency of the various
competing estimators including the classical and the inverse estimators.

Specifically, on the basis of simple approximate expression for the asymptotic
mean squared errors (AMSE) of the arbitrary regular consistent estimators, we
will show that both the classical and the inverse estimators together with other
compound estimators have justifications in their own right as low-noise consistent
and first-order efficient estimators without any reference to the specific
distributional assumptions such as normality.

This paper is organized as follows. In Section 2 we first introduce the new
definitions of the concepts of small-sample low-noise consistency and efficiency of
the estimators of . Then we derive an important lower bound for the AMSE of
the arbitrary regular consistent estimators which depends only on the second-
order moments of the measurement errors but is independent of the type of the
errors.

In Section 3 we show that both the classical and the inverse estimators are
consistent and first-order efficient irrespective of the type of the measurement
errors.

Finally in Section 4 we give some examples which illustrate the relevance of the
small-sample low-noise approach and also discuss the possible extensions to non-
linear and multivariate calibration problems.

2. Main Results

In this paper we always assume that the sample size # is fixed finite number

and also use following vector notations. Let Y =(y,, ---, »., ») be the (n +1)
dimensional random vector of observations and let u=(yu,, -, u,, u*) be the mean
vector E(Y) of the observation vector Y defined by u. =« +fx, and p*=a +fx
i =1, -, n. We note that the mean vector ¢ depends on the parameter vector

0={a, B, x) and thus we will denote it by u(6) or by u(a, 8, x) showing the explicit
dependence on the relevant parameters.
We first introduce the following definition of regular-consistent estimator of x :

Definition 1. An estimator #(Y ) of x is called regular-consistent if A#( ) is a
continuously differentiable function of Y and satisfies the condition :

Alpl@))=h pla, B, x)) = x holds forall 0=(a, §, x). (2.1)
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Remark 1. Note that our definition of consistency (2.1) is completely different
from the usual large-sample definition of consistency which is used in most of
previous works as in Berkson (1967) and Shukla (1972) because we do not consider
the behaviour of the estimator as the sample size n gets large but study the
performance of the estimator as the variance ¢° of the measurement error gets
small for finite sample size #.

Remark 2. For regular estimators, we note that condition (2.1) is equivalent to
the more familiar concept of asymptotic unbiasedness as o —0 which is defined by :

h{rnlEUz(Y'}j =x forall 0 = (a,f, x). (2.2,

Similarly we note that the condition (2.1) is equivalent to that of the consistency
in probability as o —0 :

ImA(Y) = x forall 0 = (a, B x). (2.3)

Remark 3. Any reasonable estimator of x must be consistent in the sense of
(2.1) because when there is no measurement error it seems perfectly reasonable to
require that we should be able to recover the true value x exactly no matter
where it is. In fact every estimator considered in the literature satisfies this
requirement including the classical and inverse estimators.

In order to compare the performances of various regular consistent estimators,
we introduce the definition of the AMSE ( Asymptotic Mean Squared Error) of the
estimator as follows.

Definition 2. AMSE ( Asymptotic Mean Squared Error) of the regular consistent
estimator A(Y ) of x is the quantity defined by :

AMSE [ h(Y)] = ¢* lim(E[A(Y)-x]"/c ). (2.4)

g

Now we are ready to establish the fundamental lower bound for the AMSEs of
the regular consistent estimators.

Theorem 1. If 4#(Y) is a regular consistent estimator of x, then we have the
inequality :

AMSE | (Y )] = %—— 141/ +x=%)2/S,. | forall (a, B, 20, f#0(2.5)
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L

where S,, = (X, —¥)i

Proof. By the regular consistency of the estimator 4{ - ), we have the identity :
hiula, B,a)) = x forall (a, 8, x).

Differentiating above identity partially with respect to «, 8, x respectively in
sequence, we get the following series of identities :

n

S chley, Ydkioy =0 (2.6)
1=}

S (ohféy)x +(ohjdvix = 0 (2.7)
(Chiep)p = 1. (2.8

Multiplying (2.6) by %, and (2.7) by k. respectively and subtracting them from
{2.8). we have the identity :

1 ohioy, —k —kx) +oh] oy f—kx) = 1. (2.9)
Now by the Cauchy-Schwartz inequality, we have the inequality :

(0hiey)* + X 0hiy)* = [(B—ka)® +T(k +hx)?] (2.10)
Here, by the simple projection method, we obtain the identity :

inf{kl_kzte}e.' [(ﬂ"k?x‘)zﬁ' i (ky+hox)" ] =ﬂ2[1+1/n+(x~§)2/5” 171(2.11)

Now we note that the regular consistency of the estimator #( - ) implies

RY)—x = RY)—h(y)
' i Ohioyioe, Fioh[8y)ae Folea)

and
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AMSE[WY)] = a'-'[_ﬁ]wh/a_v,;f +(ehiay) ] (2,12

immediately. Therefore, taking supremum of the left hand side of (2.10) witt
respect to k. k£, and using the identities (2.11) and (2.12), we get the requirec
inequality (2.5) immediately.

Remark 4. Note that the lower bound (2.5) does not depend on the fype of the
distribution of measurement errors as long as they are mutually uncorrelated with
zero mean and constant variance. Thus lower bound (2.5) is in fact
semiparametric information bound which is valid for arbitrary type of errot
distributions.

In the next section we will consider the problem of identifying a class of regular
consistent estimators which attain the lower bound (2.5) for all «.

3. Efficient Estimators
We first define efficiency of the regular consistent estimator as follows.

Definition 3. A regular consistent estimator #.Y ) of x is called efficient if we
have the identity :

AMSE ,h(vu:—;—j— [1+1/n+(x=%)°/S..] forall (a f x) f#0. (3.1)

Now we are ready to establish the important optimality results of the classical
and inverse estimators.

Theorem 2. If p#0, then both the classical estimator ¥ defined by (1.2) and the
inverse estimator v defined by (1.3) are regular consistent and efficient.

Proof. By the direct substitution. we can check the regular consistency of the
two estimators immediately. As for the proof of the efficiency, note that direct
Taylor expansions yield the identities :

x-x = (85, S, Hy—¥)
=g [iIMe-e)—(S./S. Hx—Xx), + ols) (3.2)
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x—x =(85,/5,)(y—y)
= (o/B) (e—&)—(S./S.. ) x—%)] + o(o) (3.3)

where e=Y &,/n, S.= % (x, —x)e, —¢).
i1 =1

Because measurement errors are mutually uncorrelated with zero mean and unit
variance, (3.2) and (3.3) imply immediately the efficiency of the estimators.

Remark 5. Since the estimators x and x are both efficient estimators, we can
construct a new compound estimator x* of x which is defined by :

x* =@ M pp x) + (1-p)p(x)] (3.4)

where ¢ - ) is an arbitrary monotonically increasing function of x and 0<p<1.
Then we can easily show that the compound estimator x* is also regular consistent
and efficient estimator. Two important special cases are the estimators defined
by :

x+ x ;
' o= . and x5 =+

Remark 6. In order to further discriminate the so-called second-order efficient
estimator among the various first-order efficient estimators, we have to take
into account more terms in the Taylor expansion and should also assume the
knowledge of the third and forth-order moments of the measurement errors which
is typically not available in the small-sample experiment. Therefore this topic
will not be considered in this paper.

4. Examples and Discussions

As a simple practical example of typical small-sample calibration experiment,
we first consider the calibration experiment of measuring the moment of inertia of
the product discussed in 22.2 of Taguchi (1987).

Example 1. In this calibration experiment, test sample size is »=12 and the
estimated variance is s =0.013 and a=0 and $=142.35. We note that the classical



% o o EAENEsA 224 28 1994 6

estimator x gives 0.0590 + 0.0018 as an estimate of the moment of inertia x of the
product while the inverse estimator x gives 0.05898 + 0.0018 which is very close to
the value x=0.0590 1+ 0.0018. This result seems to strongly support the conclusion
of our study about the practical equivalence of the two estimators in the small-
sample low-noise set-up. See 22.2 of Taguchi (1987 for more details of the
calculation.

Next example provides simple numerical comparison between the approximate
results of our work and the exact results from the small-sample simulation study
for the computation of the MSEs of the classical and inverse estimators as is dorne
by Krutchkoff (1967).

Example 2. Krutchfield (1967) conducted intensive simulation study for the
comparison of MSEs of classical and inverse methods of calibration. Typical
sample sizes were n =4, 6 and 8 and the standard deviation was o=0.1 with =0, i
=0.5. On close examination, the simulated values of the MSEs of the inverse
estimators are generally in good agreement with the values given by the
approximate formula (3.1} for AMSEs derived in Section 3. This results seems to
justify the validaty of the small-sample low-noise approximation developed in this
paper. Following table provides typical comparison between our results and those
from the simulation study. See the Table 5 of Krutchfield (1967) for more details.

Simulated MSEs and AMSE for n=4, design 2{x=0), 2(x=1)

t
|

MSE |
‘ x classical inverse ] AMSE
‘ 0 075 060 ; 060 \
2 061 | 050 | 053 ;
! 4 058 | 048 050 \
6 059 049 050
8 063 052 053
1.0

073 0569 .060

Finally we discuss the problems of extending our results to non-linear and
multivariate calibration models.

Remark 7. If we consider general non-/inear calibration model :

vi = f(x; B + e
y=flsp +e i=1, - n
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where f( - ;B) represents an arbitrary momotonic non-linear function of x and g
denotes vector of regression parameters. We can establish similar optimality
results for the non-linear least squares estimators of x within the small-sample
low -noise framework.

Remark 8. Instead of the univariate calibration model (1.1), we can consider
multivariate calibration model where each of the observations in (V,. X,) i=1, -

3

n, (Y, X) are m-dimensional random vectors. Then we can generalize our results
to this case without difficulty by considering appropriate small-sample low-noise
approximation.
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