• Title/Summary/Keyword: calculation of mechanical variables

Search Result 79, Processing Time 0.024 seconds

Effect of Boundary Conditions on Failure Probability of Buried Steel Pile (매설된 강 파일의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식;김의상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.204-213
    • /
    • 2003
  • A survey for finding corrosion examples was performed on the underground steel piles buried for 19 years in the area of iron and steel making factory near Young-il bay. A failure probability model, which can be used to check the reliability of the corrosive mechanical element, based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as temperature change, soil-friction, internal pressure, earthquake, loading of soil, traffic loads and corrosion on failure probability of the buried steel piles are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

Effect of Boundary Conditions on Failure Probability of Buried Pipeline (매설배관의 경계조건이 파손확률에 미치는 영향)

  • Lee, Ouk-Sub;Pyun, Jang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.311-316
    • /
    • 2001
  • A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as internal fluid pressure, external soil, traffic loads, temperature change and corrosion on failure probability of the buried pipes are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

  • PDF

Process Design for Profile Ring Rolling of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 형상 링 압연 공정설계)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.357-360
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was designed by finite element(FE) simulation and experimental analysis. The design includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

A Study on Profile Ring Rolling Process of Titanium Alloy (타이타늄합금 형상 링 압연공정 연구)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.223-228
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was investigated by finite element(FE) simulation and experimental analysis. The process design of the profile ring rolling includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

Fatigue Life Estimation of Welded Joints considering Statistical Characteristics of Multiple Surface Cracks (복수 표면균열의 확률적 특성을 고려한 용접부 피로수명 평가)

  • Han, Jeong Woo;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1472-1479
    • /
    • 2005
  • Multiple surface crack distributed randomly along a weld toe influences strongly on the fatigue crack propagation life of welded joint. It is investigated by using statistical approaches based on series of systematic experiments. From the statistical results, initial crack numbers and its locations follow the normal distribution, and the probability of initial crack depths and lengths can be described well by tile Weibull distribution. These characteristics are used to calculate the fatigue crack propagation life, in which the mechanisms of mutual interaction and coalescence of the multiple cracks are considered as well as the Mk-factors obtained from a parametric study on the crack depths and lengths. The automatic calculation is achieved by the NESUSS, where the parameters such as the number, location and size of the cracks are all treated as random variables. The random variables are dealt through the Monte-Carlo simulation with sampling random numbers of 2,000. The simulation results show that the multiple cracks lead to much shorter crack propagation life compared with those in single crack situation. The sum of the simulation and tile fatigue crack initiation life derived by the notch strain approach agrees well with the experiments.

The Analysis of Optimum Design Parameters for a Flat-Plate solar Collector Through Computer Simulation (컴퓨터 시물레이션 에 의한 太陽熱 集熱器 의 最適設計 에 관한 硏究)

  • 조수원;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1984
  • In the utilization of solar energy most often a flat solar collector is used for solar heating, system. Since solar energy is absorbed through this solar collector, it is considered to be a most important part in the whole solar heating system. The purpose of the present investigation is to evaluate the influence of varying design parameters for thermal performances of flat-plate solar collector. By analysing these parameters, optimum design of solar collector would become possible. Specification of the existing solar collector are utilized in calculation as a starting point. Analysis is carried out numerically for "Unit Solar Collector" which is composed of fin and tube. Among design parameters. such parameters as mass flow rate per unit area, tube spacing and fin thickness are selected as variables in the computer simulation model. Results are presented for thermal performances of flat-plate solar collector for each important design parameters, so that predictions become possible through numerical analysis without performing experiments whenever it is required. required.

A Parametric Study of Displacement Measurements Using Digital Image Correlation Method

  • Ha, Kuen-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.518-529
    • /
    • 2000
  • A detailed and thorough parametric study of digital image correlation method is presented. A theoretical background and development of the method were introduced and the effects of various parameters on the determination of displacement outputs from the raw original and deformed image information were examined. Use of the normalized correlation coefficient, the use of 20 to 40 pixels for a searching window side, 6 variables searching, bi-cubic spline sub pixel interpolations and the use of coarse-fine search are some of the key choices among the results of parametric studies. The displacement outputs can be further processed with two dimensional curve fitting for the data noise reduction as well as displacement gradient calculation.

  • PDF

CONDITIONAL MOMENT CLOSURE MODELING OF TURBULENT SPRAY COMBUSTION IN A DIRECT INJECTION DIESEL ENGINE

  • HAN I. S.;HUH K. Y.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.571-577
    • /
    • 2005
  • Combustion of turbulent sprays in a direct injection diesel engine is modeled by the conditional moment closure (CMC) model. The CMC routines are combined with the KIVA code to provide conditional flame structures to determine mean state variables, instead of mean reaction rates. An independent transport equation is solved for each flame group with equal mass of sequentially evaporating fuel vapor. CMC calculation begins as the fuel mass for each flame group begins to evaporate with corresponding initialization conditions. Comparison is made with measured pressure traces for four operating conditions at different rpm's and injection conditions. Results show that the CMC model with multiple flame histories can successfully be applied to ignition and mixing-controlled combustion phases of a diesel engine.

A Low-Reynolds Number Second Moment Closure for Turbulent Heat Fluxes (저레이놀즈수 2차 모멘트 난류 열유속모형 개발에 관한 연구)

  • 신종근;최영돈;이건휘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3196-3207
    • /
    • 1993
  • A second moment turbulent closure for the turbulent heat flux near a wall is developed by modification of model constants in pressure interaction term as the variables of the turbulent Reynolds number using the universal properties of turbulent heat flux near the wall. The present model shows that model constant for the wall reflection term in pressure interaction is most important in modelling of the near wall heat flux. Fully developed pipe flows with constant wall heat flux are tested to validate the proposed model. In most of calculation region, the predicted turbulent properties agree better with the experimetal data than the results from standard algebraic heat flux model which use the uniform model constants.

Efficient Computation of Turbulent Flow Noise at Low Mach Numbers Via Hybrid Method (하이브리드기법을 이용한 저마하수 난류소음의 효율적 전산해석)

  • Seo, Jung-Hee;Moon, Young-J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.814-821
    • /
    • 2007
  • A hybrid method is presented for efficient computation of turbulent flow noise at low Mach numbers. In this method, the turbulent flow field is computed by incompressible large eddy simulation (LES), while the acoustic field is computed with the linearized perturbed compressible equations (LPCE) derived in this study. Since LPCE is computed on the rather coarse acoustic grid with the flow variables and source term obtained by the incompressible LES, the computational efficiency of calculation is greatly enhanced. Furthermore, LPCE suppress the instability of perturbed vortical mode and therefore secure consistent and stable acoustic solutions. The proposed LES/LPCE hybrid method is applied to three low Mach number turbulent flow noise problems: i) circular cylinder, ii) isolated flat plate, and iii) interaction between cylinder wake and airfoil. The computed results are closely compared with the experimental measurements.