• Title/Summary/Keyword: calcium-silicate-hydrate

Search Result 79, Processing Time 0.028 seconds

Chemical characteristics of mineral trioxide aggregate and its hydration reaction

  • Chang, Seok-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.4
    • /
    • pp.188-193
    • /
    • 2012
  • Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed.

Creep Mechanisms of Calcium-Silicate-Hydrate: An Overview of Recent Advances and Challenges

  • Ye, Hailong
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.453-462
    • /
    • 2015
  • A critical review on existing creep theories in calcium-silicate-hydrate (C-S-H) is presented with an emphasis on several fundamental questions (e.g. the roles of water, relative humidity, temperature, atomic ordering of C-S-H). A consensus on the rearrangement of nanostructures of C-S-H as a main consequence of creep, has almost been achieved. However, main disagreement still exists on two basic aspects regarding creep mechanisms: (1) at which site the creep occurs, like at interlayer, intergranular, or regions where C-S-H has a relatively higher solubility; (2) how the structural rearrangement evolutes, like in a manner of interlayer sliding, intra-transfer of water at various scales, recrystallization of gelled-like particles, or dissolution-diffusion-reprecipitation at inter-particle boundary. The further understanding of creep behavior of C-S-H relies heavily on the appropriate characterization of its nanostructure.

Effects of Ca/Si Molar Ratio on the Interatomic Distance of Synthetic Calcium Silicate Hydrate (C-S-H) at Elevated Temperature (고온 가열시 Ca/Si 몰비율에 따른 합성 칼슘 실리케이트 수화물(C-S-H)의 구성 원자간 거리 변화)

  • Im, Su-Min;Bae, Sung Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.144-145
    • /
    • 2021
  • Calcium silicate hydrate(C-S-H) is the principal binding phase that controls the strength and thermal stability of concrete. However, the effects of high temperature on the lattice structure and interatomic structure of C-S-H remains poorly understood due to its nanocrystallinity. This study aims to elucidate the change in interatomic distance of synthetic C-S-H with different Ca/Si molar ratios after exposure to high temperature via high energy X-ray scattering experiment which is a powerful analytical tool for amorphous materials.

  • PDF

Preparation of Calcium Silicate Hydrate Extrudates and Their Phosphate Adsorption Studies

  • Rallapalli, Phani Brahma Somayajulu;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.562-568
    • /
    • 2019
  • Cylindrical shape extrudates of calcium silicate hydrate (CSH) were prepared using different percentages of polyvinyl alcohol (PVA) / sodium alginate (SA) mixtures as binders and an aqueous solution containing 6% $H_3BO_3$ and 3% $CaCl_2$ was used as a cross linking agent. As the quantity of alginate increases, the phosphate removal efficiency and capacity were decreased. Among four different extrudate samples, the sample prepared by 8% PVA + 2% SA showed the highest phosphate removal efficiency (59.59%) and capacity (29.97 mg/g) at an initial phosphate concentration of 100 ppm and 2.0 g/L adsorbent dosage. Effects of the adsorbent dosage, contact time and initial phosphate concentration on the sample were further studied. The removal efficiency and capacity obtained by a 4.0 g/L adsorbent dose at an initial phosphate concentration of 100 ppm in 3 h were 79.38% and 19.96 mg/g, respectively. The experimental data of kinetic and isotherm measurements followed the pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. These results suggested that the phosphate removal was processed via a chemisorption and a monolayer coverage of phosphate anions was on the CSH surface. The maximum adsorption capacity ($q_{max}$) was calculated as 23.87 mg/g from Langmuir isotherm model.

Hydration of Modified Converter Slag (개질한 전노슬래그의 수화반응)

  • 엄태선;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.157-162
    • /
    • 1981
  • A converter slag has been heat-treated above melting point at reduced condition by cokes. As the result, most iron was separated. To make hydraulic compounds, calcium oxide was added to the reduced converter slag and the mixtures were sintered. This modified converter slag clinker mainly contained tricalcium silicate and calcium aluminates, and have a great potential to be a good hydraulic cement. The hydrates of the hydraulic compounds and gypsum with and without granulated slags, were mainly C-S-H, ettringite, calcium monosulfoaluminate hydrate, calcium aluminate hydrate, and $Ca(OH)_2$

  • PDF

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

  • Ghebrab, Tewodros T.;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.

The Synthesis and Mechanical Property of Calcium Silicate Hydrates Using the Amorphous Silicates (비정질 규산원료를 이용한 칼슘실리케이트 수화물 합성과 역학적 특성)

  • 엄태선;최연묵;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.45-55
    • /
    • 1997
  • Various kinds of amorphous silicates were used as raw materials to synthesize building materials based on calcium silicate hydrates. Relationships between the reactivities of silicates and castabilities of the building materials were investigated. In addition, effects of the reactivities of silicates on the mechanical properties of casted specimens were studied by analyzing microstructures and hydrates produced. As the reactivity of silicate increase, the press castability increases and the crystal size of hydrate and pore size also increase. For the mechanical properties, the flexural strength increases with decreasing crystal size and densifing microstructure. The compressive strength is greatly dependent on the den-sification of microstructure rather than crystal size of hydrate. Based on the results, diatomous ma-terials are desirable due to high reactivity and formation of densified microstructure. Slag and fly ash may be partially used as raw materials with amorphous silicates to manufacture building materials based on calcium silicate hydrates.

  • PDF

Durability Enhancement in Nano-Silica Admixed Reinforced Mortar

  • Saraswathy, Velu;Karthick, Subbiah;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.297-306
    • /
    • 2014
  • Recently nano-materials are gaining more importance in the construction industry due to its enhanced energy efficiency, durability, economy, and sustainability. Nano-silica addition to cement based materials can control the degradation of the fundamental calcium-silicate-hydrate reaction of concrete caused by calcium leaching in water as well as block water penetration and therefore lead to improvements in durability. In this paper, the influence of synthesized nano silica from locally available rice husk on the mechanical properties and corrosion resistant properties of OPC (Ordinary Portland Cement) has been studied by conducting various experimental investigations. Micro structural properties have been assessed by conducting Scanning Electron Microscopy, Thermo gravimetry and Differential Thermal Analysis, X-Ray Diffraction analysis, and FTIR studies. The experimental results revealed that NS reacted with calcium hydroxide crystals in the cement paste and produces Calcium Silicate Hydrate gel which enhanced the strength and acts as a filler which filled the nano pores present in concrete. Hence the strength and corrosion resistant properties were enhanced than the control.

The Reduction of Maximum Hydration Temperature in Cement Paste Using Calcium Silicate Hydrates and Glucose (칼슘실리케이트 수화물과 포도당을 이용한 시멘트 페이스트의 최대 수화온도 저감)

  • Moon, Hoon;Kim, Hyeong-Keun;Ryu, Eun-Ji;Jin, Eun-Ji;Chung, Chul-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.265-272
    • /
    • 2015
  • In this study, a method to reduce temperature rise due to hydration in mass concrete is investigated. It is to use retarder (glucose) for reducing heat of hydration and to use calcium silicate hydrate (C-S-H) for compensating the retardation effect due to its role as a nucleation seed. For this purpose, the temperature rise of cement paste due to hydration was measured and the effect of using both C-S-H and glucose on setting and 28-day compressive strength of mortar specimens was investigated. According to the experimental results, using C-S-H and glucose caused the reduction in the maximum temperature but accelerated the time to reach the maximum temperature compared to that of retarded cement paste using glucose. In addition, using C-S-H and glucose did not show significant effect on 28-day compressive strength of mortar specimens, indicating that the method shown in this study can be a successful alternative to control maximum temperature rise in mass concrete.