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Chemical characteristics of mineral trioxide aggregate 
and its hydration reaction

Mineral trioxide aggregate (MTA) was developed in early 1990s and has been 
successfully used for root perforation repair, root end filling, and one-visit 
apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. 
When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. 
Formed calcium hydroxide interacts with the phosphate ion in body fluid and form 
amorphous calcium phosphate (ACP) which finally transforms into calcium deficient 
hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-
dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of 
zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use 
of acids or contact with excessive blood should be avoided before complete set of MTA, 
because these conditions could adversely affect the hydration reaction of MTA. Further 
studies on the chemical nature of MTA hydration reaction are needed. (Restor Dent 
Endod 2012;37(4):188-193)

Key words: Calcium hydroxide; Calcium silicate hydrate; Dicalcium silicate; Hydration; 
Mineral trioxide aggregate; Tricalcium silicate

Introduction

Mineral trioxide aggregate (MTA) was developed in early 1990s by Torabinejad and 
Dentsply Tulsa Dental (ProRoot MTA, Dentsply Tulsa Dental, Johnson City, TN, USA). 
MTA was originally developed for perforation repair and root end filling.1,2 And due 
to its clinical success, MTA has expanded its uses to one-visit apexification, pulp 
capping, and so on.3,4 Since its introduction to endodontics, MTA has shown great 
clinical success due to its good sealing ability and biocompatibility.5,6 Among many 
advantages of MTA, main and unique advantage is that the setting of MTA is not 
adversely affected by presence of water. Indeed, MTA needs water in its setting 
reaction, thus it is considered hydrophilic and water tolerant. Considering that the 
traditional root perforation repair materials such as composite resin and glass ionomer 
are sensitive to the existence of water, water tolerance of MTA is believed to be its 
unique advantage which results in clinical success. However, until now, the setting 
reaction and the reaction product of hydrated MTA has not been fully investigated and 
clearly understood, although the setting mechanism and hydration products of MTA 
have significant effects on the chemical and physical properties of MTA. Thus, the aim 
of this article is to review the chemical characteristics and the hydration reaction of 
MTA.
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Materials and Methods

Pubmed search was used in preparation of this article. The 
keywords used for search of the articles were ‘mineral trioxide 
aggregate + hydration’ and ‘mineral trioxide aggregate + 
interface’. Some articles which were hand-searched regarding 
these key words were also included. Articles written in 
language other than English were excluded.

Chemical constitutions of MTA

United States (US) patent #5415547 and #5769638 
exclaims that the principal component of grey ProRoot MTA 
is Portland cement.7 Other US patents regarding the white 
ProRoot MTA (US patent #20030159618, #2004226478, 
#20050263036) showed that the chemical ingredients of 
white aggregate is not identical to that of grey MTA.
MTA is composed of complex compounds. Main 

constituents of MTA are tricalcium silicate and dicalcium 
silicate.8-10 In addition, MTA contains relatively small 
amount of tricalcium aluminate and tetracalcium 
aluminoferrite. To increase radiopacity, bismuth oxide was 
added in MTA. It was well known in cement chemistry, 
that tricalcium silicate and dicalcium silicate are made 
from lime (CaO) and silica (SiO2).

11,12 These and some 
other raw materials such as aluminum oxide (Al2O3) and 
ferric oxide (Fe2O3) are heated in clinker to form four 
phases of tricalcium silicate, dicalcium silicate, tricalcium 
aluminate and tetracalcium aluminoferrite. Among these, 
tricalcium aluminate was known to reduce the setting time 
of MTA.13 Thus, lime, silica, aluminum oxide, ferric oxide, 
and bismuth trioxide are the main oxides that constitute 
MTA. Asagary et al. also confirmed that the grey and white 
MTA are composed mainly of lime (CaO), silica (SiO2) and 
bismuth oxide (Bi2O3).

7 They also reported that white MTA 
contained significantly lesser amount of aluminum oxide 
(Al2O3), magnesium oxide (MgO) and ferric oxide (Fe2O3) 
than grey MTA.7

Heavy metal contents in MTA

It has been widely known that MTA and Portland cement 
are very similar in their chemical compositions.14,15 In 
this regard, there have been studies which compared 
the constituting elements of MTA and Portland cement. 
In 2007, Chang and Bae reported that MTA and Portland 
cement have similar elemental compositions.16 Chang et 
al. also demonstrated that MTA and Portland are composed 
of similar oxides and phases.17 However, there are still 
differences between Portland cement and MTA in heavy 
metal contents.18 In a previous study of Chang et al., 
which used mixture of hydrochloric acid and nitric acid 
(‘aqua-regia’) for leaching various heavy metals from MTA 
and Portland cement, it was known that MTA contained 

significantly less arsenic, lead, chromium than Portland 
cement.19 From this study, it was recognized that the purity 
of MTA and Portland cement is not comparable. White MTA 
contains much less iron than gray MTA.19 However, white 
MTA still contains considerable amount of iron which could 
be a possible cause of tooth discoloration.20 The cause 
and effect relationship between tooth discoloration and 
iron contents of MTA needs further investigation. The 
other study carried out by the same author also showed 
that ProRoot MTA is free of lead and hexavalent chromium 
which were known to be calcinogen.21 Another study of 
Schembri et al. also reported that MTA contained lesser 
amount of arsenic than Portland cement.22 Matsunage et al. 
proclaimed that ProRoot MTA is safe material in terms of 
heavy metal contents.23 Considering these reports, clinical 
use of ProRoot MTA appears to be safe in terms of its heavy 
metal contents.19,21

Hydration product of MTA

Hydration reaction of MTA was reported to be similar to 
that of Portland cement. The setting reaction of MTA and 
Portland cement is a complex process. At first, the particles 
of tricalcium silicate react with water. In this process, the 
periphery of the tricalcium silicate powder is melted and 
form calcium silicate hydrate.24 Calcium silicate hydrate is 
known to be composed of calcium and silicon which were 
derived from MTA and hydroxyl ion which is supplied from 
mixing liquid. ProRoot MTA contains bismuth oxide as a 
radiopacifier. In this reason, in the setting reaction of 
ProRoot MTA, it was reported that bismuth is incorporated 
into calcium silicate hydrate and to form calcium-silicate-
bismuth-hydrate, which is similar to calcium silicate 
hydrate.25

Another hydration reaction occurs between tricalcium 
aluminate and water. This reaction results in ettringite in 
the presence of gypsum, and eventually yield monosulfate 
once the gypsum was depleted.26 However, this reaction 
product is reported to be produced in quite smaller 
quantities than calcium silicate hydrate gels because the 
quantities of tricalcium aluminate contained in MTA is 
much smaller than tricalcium silicate.
Previous study reported that calcium silicate hydrate is 

a solid gel which shows amorphous appearance. As the 
setting process continues, the amounts of formed calcium 
silicate hydrate increases and occupy the voids between 
the particles. The presence of calcium silicate hydrate gel 
in hydration process of MTA has been reported in many 
previous reports.24-29

The other product which is formed as a result of setting 
reaction of MTA is calcium hydroxide. Calcium hydroxide is 
known to be formed as a result of the hydration reaction of 
MTA.8 Calcium hydroxide explains the high pH of MTA. And 
it was postulated that the formation of calcium hydroxide 
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attributed the hard tissue forming ability of MTA. As the 
setting reaction further progresses, the formed calcium 
hydroxide reacts with calcium sulfate to form ettringite.30 
Calcium hydroxide also reacts with phosphate ion to form 
amorphous calcium phosphate which eventually yields 
hydroxyapatite.31-33 In other words, as the MTA matures in 
phosphate containing body fluids, the calcium deficient 
hydroxyapatite (CDHA) is formed at the surface of MTA. 
CDHA is composed of calcium released from MTA, phosphate 
ion and hydroxyl ion which are contained in body fluids. 
Previous studies reported that the type and the morphology 
of CDHA formed in Dentin-MTA interfaces were various and 
tended to be dependent on pH, Ca/P ratio, and the type of 
solution in which the MTA-dentin interface is exposed.34

Effect of pH on hydration reaction of MTA

It was reported that physical and chemical properties of 
MTA are adversely affected in a low-pH environment.35 It 
was also reported that the quality of crystals which is a 
reaction product of hydrated MTA was poor in acidic pH 
compared to alkaline pH.35 Another study recommended 
that the acid-etching of ProRoot MTA should be delayed 
until 96 hours after MTA placement to avoid the harmful 
effect of acid etching on MTA surface.36 Regarding the 
alkaline environment, there is a report that calcium 
hydroxide induced alkalinity increased porosity and un-
hydrated microstructure of MTA.34 Generally, there is no 
consensus on whether the calcium hydroxide affects the 
sealability of MTA.37,38 In this sense, further studies on the 
effect of calcium hydroxide on hydration reaction of MTA is 
necessary.

Interface between MTA and dentin

Although the superior sealing ability of MTA was well 

documented and reported, there has been relatively scarce 
study on the morphology of MTA-dentin interface.39,40 
Recently, Reyes-Carmona studied and reported the 
interfacial layer formed between MTA and dentin.41,42 
Reyes-carmona et al. and Dreger et al. reported that this 
interfacial layer was formed as a result of biomineralization 
and some tag-like structures were formed in this 
process.40,41 These were the pioneering reports that the 
tag-like structures was formed in MTA-dentin interface. 
Bird et al. also reported that the interfacial layer made 
of hydroxyapatite was formed between MTA and dentin.39 
Based on these studies, it could be postulated that the 
superior sealing ability of MTA could be partly attributed 
to the formation of tag-like structures in MTA-dentin 
interface. It was interesting that MTA produced more 
MTA tag-like structures than Portland cement.40 It was 
also interesting finding that hydrated MTA immersed in 
phosphate buffered saline (PBS) produced more mineral 
precipitation than those immersed in distilled water.43 
These tag-like structures are believed to be the result of 
ionic dissolution of MTA which resulted in growth and 
nucleation of the apatite layer.44,45 Dreger et al. reported 
that the calcium ions released from the cements diffused 
through the dentinal tubules and reacted with phosphate 
ions in the tissue fluids, and yield calcium phosphate.40 
And eventually, this calcium phosphate incorporated 
other ions and matured into carbonated apatite (CDHA).40 
This phenomenon suggested the possibility that the 
precipitated minerals formed the mineralized layer between 
MTA and dentin which yielded chemical bonding between 
MTA and dentin.33 Han and Okiji demonstrated that dentin 
which was in contact with MTA uptook Ca and Si from this 
calcium silicate based materials.46 They reported that the 
Ca and Si uptake of dentin caused chemical and structural 
modification of it, which might result in higher acid 
resistance and physical strength (Figure 1).

Figure 1. Scanning Electron Microscope (SEM) image which shows the formation of tag-like 
structures in Ortho MTA-dentin interface and in dentinal tubules. (a) in Ortho MTA-dentin interface 
(X1,000); (b) in dentinal tubules (X1,000). Courtesy of Dr. Joon-Sang Yoo.

(b)(a)
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Interaction between MTA and adjacent filling materials

In the procedures of perforation repair, MTA is placed 
and the other restorative materials such as glass ionomer 
(GI) cement or intermediate restorative material tend to 
be overlaid on top of it. However, the reports regarding 
the interaction between MTA and these filling materials 
are scarce. Camilleri reported that MTA interacted with 
adjacent restorative materials which resulted in elemental 
migration between MTA and other restorative materials.47 
They also suggested that the zinc oxide eugenol (ZOE)-
based cements should not be used adjacent to MTA because 
zinc causes retardation of cement hydration and increases 
porosity. They also reported that the placement of GI 
material on partially set MTA resulted in weakening of GI 
because it lost water to MTA during the hydration reaction 
of MTA.

Effects of blood or serum contact of MTA during hydration

Generally, it was known that MTA was very tolerable to 
the presence of blood or serum in its setting reaction. 
However, recently, studies were published regarding the 
effect of blood or serum contamination of MTA during 
hydration reaction. At first, in 2008, Tingey et al. reported 
that the surface of MTA set in water and fetal bovine serum 
(FBS) showed difference.48 According to their report, MTA 
set in the presence of water showed marked crystalline 
structures mostly assumed to be calcium product. However, 
the surface of MTA set at the presence of FBS showed 
globular appearance rather than crystalline one. Nekoofar et 
al. also reported that MTA which was set at the presence of 
fresh whole blood showed decreased compressive strength 
and the surface of the blood contaminated MTA showed 
absence of acicular crystalline structure formation.49 This 
result means that the blood contamination of unset MTA 
adversely affects the setting reaction and mechanical 
strength of MTA. The detrimental effect of serum 
incorporation in the hydration reaction of MTA was clearly 
shown by Kim et al. This study markedly demonstrated that 
the MTA samples exposed to FBS in their setting reaction 
did not harden properly.50 All of these studies speculate 
that some protein components in serum or whole blood 
prevent the complete hydration and complete setting of 
MTA. However, mechanism of this phenomenon needs to be 
verified in future studies.

Conclusions

MTA is mainly composed of tricalcium silicate and 
dicalcium silicate. MTA and Portland cement are similar 
in their chemical composition, however, MTA contains 
lower amounts of heavy metals than Portland cement. The 
hydration reaction of MTA mainly produces calcium silicate 

hydrate and calcium hydroxide. Calcium hydroxide could 
form CDHA in contact with body fluids. Calcium silicate 
hydrate, calcium hydroxide and CDHA forms the interfacial 
layers between MTA and dentin which results in good 
sealing ability of MTA. The use of ZOE-based materials may 
retard the setting of MTA. Also, the use of acidic primer 
or contact with excessive blood should be avoided before 
complete set of MTA, because these conditions could 
adversely affect the hydration reaction of MTA.

Conflict of Interest: No potential conflict of interest 
relevant to this article was reported.
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