• Title/Summary/Keyword: calcium signaling

Search Result 246, Processing Time 0.028 seconds

Identification of another calmodulin-binding domain at the C-terminal region of AtCBP63

  • Kim, Sun-Ho;Kang, Yun-Hwan;Han, Hay-Ju;Bae, Dong-Won;Kim, Min-Chul;Lim, Chae-Oh;Chung, Woo-Sik
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • Calcium signals can be transduced by binding calmodulin (CaM), a $Ca^{2+}$ sensor in eukaryotes, is known to be involved in the regulation of diverse cellular functions. We isolated a CaM-binding protein 63 kD (AtCBP63) from the pathogen-treated Arabidopsis cDNA expression library. Recently, AtCBP63 was identified as a CaM bining protein. The CaM binding domain of AtCBP63 was reported to be located in its N-terminal region, In this study, however, we showed that ACaM2 could specifically bind to second CaM-binding domain (CaMBD) of AtCBP63 at the C-terminal region. The specific binding of CaM to CaM binding domain was confirmed by a gel mobility shift assay, a split ubiquitin assay, site-directed mutagenesis, and a competition assay using a $Ca^{2+}$/CaM-dependent enzyme. The gene expression of AtCBP63 was induced by pathogens and pathogens related second messengers. This result suggests that a CaM binding protein, AtCBP63, may play role in pathogen defense signaling pathway.

The change of signaling pathway on the electrical stimulated contraction in streptozotocin-induced bladder dysfunction of rats

  • Han, Jong Soo;Min, Young Sil;Kim, Gil Hyung;Chae, Sang-hyun;Nam, Yoonjin;Lee, Jaehwi;Lee, Seok-Yong;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.577-584
    • /
    • 2018
  • Bladder dysfunction is a common complication of diabetes mellitus (DM). However, there have been a few studies evaluating bladder smooth muscle contraction in DM in the presence of pharmacological inhibitors. In the present study, we compared the contractility of bladder smooth muscle from normal rats and DM rats. Furthermore, we utilized pharmacological inhibitors to delineate the mechanisms underlying bladder muscle differences between normal and DM rats. DM was established in 14 days after using a single injection of streptozotocin (65 mg/kg, intraperitoneal) in Sprague-Dawley rats. Bladder smooth muscle contraction was induced electrically using electrical field stimulation consisting of pulse trains at an amplitude of 40 V and pulse duration of 1 ms at frequencies of 2-10 Hz. In this study, the pharmacological inhibitors atropine (muscarinic receptor antagonist), U73122 (phospholipase C inhibitor), DPCPX (adenosine $A_1$ receptor antagonist), udenafil (PDE5 inhibitor), prazosin (${\alpha}_1$-receptor antagonist), verapamil (calcium channel blocker), and chelerythrine (protein kinase C inhibitor) were used to pretreat bladder smooth muscles. It was found that the contractility of bladder smooth muscles from DM rats was lower than that of normal rats. In addition, there were significant differences in percent change of contractility between normal and DM rats following pretreatment with prazosin, udenafil, verapamil, and U73122. In conclusion, we suggest that the decreased bladder muscle contractility in DM rats was a result of perturbations in $PLC/IP_3$-mediated intracellular $Ca^{2+}$ release and PDE5 activity.

Gardenia jasminoides extract and its constituent, genipin, inhibit activation of CD3/CD28 co-stimulated CD4+ T cells via ORAI1 channel

  • Kim, Hyun Jong;Nam, Yu Ran;Woo, JooHan;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.363-372
    • /
    • 2020
  • Gardenia jasminoides (GJ) is a widely used herbal medicine with anti-inflammatory properties, but its effects on the ORAI1 channel, which is important in generating intracellular calcium signaling for T cell activation, remain unknown. In this study, we investigated whether 70% ethanolic GJ extract (GJEtOH) and its subsequent fractions inhibit ORAI1 and determined which constituents contributed to this effect. Whole-cell patch clamp analysis revealed that GJEtOH (64.7% ± 3.83% inhibition at 0.1 mg/ml) and all its fractions showed inhibitory effects on the ORAI1 channel. Among the GJ fractions, the hexane fraction (GJHEX, 66.8% ± 9.95% at 0.1 mg/ml) had the most potent inhibitory effects in hORAI1-hSTIM1 co-transfected HEK293T cells. Chemical constituent analysis revealed that the strong ORAI1 inhibitory effect of GJHEX was due to linoleic acid, and in other fractions, we found that genipin inhibited ORAI1. Genipin significantly inhibited IORAI1 and interleukin-2 production in CD3/CD28-stimulated Jurkat T lymphocytes by 35.9% ± 3.02% and 54.7% ± 1.32% at 30 μM, respectively. Furthermore, the same genipin concentration inhibited the proliferation of human primary CD4+ T lymphocytes stimulated with CD3/CD28 antibodies by 54.9% ± 8.22%, as evaluated by carboxyfluorescein succinimidyl ester assay. Our findings suggest that genipin may be one of the active components of GJ responsible for T cell suppression, which is partially mediated by activation of the ORAI1 channel. This study helps us understand the mechanisms of GJ in the treatment of inflammatory diseases.

Molecular Mechanisms of Generation for Nitric Oxide and Reactive Oxygen Species, and Role of the Radical Burst in Plant Immunity

  • Yoshioka, Hirofumi;Asai, Shuta;Yoshioka, Miki;Kobayashi, Michie
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.321-329
    • /
    • 2009
  • Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and $H_2O_2$ accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.

Controlled Release Behavior of Bioactive Molecules from Photo-Reactive Hyaluronic Acid-Alginate Scaffolds

  • Nam, Hye-Sung;An, Jeong-Ho;Chung, Dong-June;Kim, Ji-Heung;Chung, Chong-Pyoung
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.530-538
    • /
    • 2006
  • There are three important components in tissue engineering: the cells, signaling factors (cytokines and growth factors), and scaffolds. To obtain finely engineered tissue, all three components should perform their individual functions and be fully integrated with each other. For the past few years, we have studied the characteristics of photodimerizable HA (CHA)/alginate (CA) composite materials. CHA/CA complex hydrogels, which were irradiated under UV light and, then treated with calcium ions, were found to have good biocompatibility, mechanical properties and water resistance for implantable tissue scaffolds. In this study, we introduced a cell growth factor (basic fibroblast growth factor; bFGF) into the CHA/CA scaffolds and studied its release behavior. We also introduced tetracycline hydrochloride and flurbiprofen into the same scaffolds as model activation factors and evaluated their release behaviors from the scaffolds. The drug release rate from the materials was influenced by various parameters, such as the degree of crosslinking, the cross linker type, the physico-chemical properties of the drug, and the amount of the drug in the polymer. The results indicated that the negatively charged CHA/CA composite materials showed sustained release behavior and that HA has a particularly strong negative charge, making it attractive toward tetracycline hydrochloride and bFGF, but repulsive toward flurbiprofen.

Co-expression of a novel ankyrin-containing protein, rSIAP, can modulate gating kinetics of large-conductance calcium-activated potassium channel from rat brain.

  • Lim, Hyun-Ho;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.45-45
    • /
    • 2003
  • We isolated a novel ankyrin-repeat containing protein, rSIAP (rSlo Interacting Ankyrin-repeat Protein), as an interacting protein to the cytosolic domain of the alpha-subunit of rat large-conductance Ca$\^$2+/-activated K$\^$+/ channel (rSlo) by yeast two-hybrid screening. Affinity pull-down assay showed the direct and specific interaction between rSIAP and rSlo domain. The channel-binding proteins can be classified into several categories according to their functional effects on the channel proteins, i.e. signaling adaptors, scaffolding net, molecular tuners, molecular chaperones, etc. To obtain initial clues on its functional roles, we investigated the cellular localization of rSIAP using immunofluorescent staining. The results showed the possible co-localization of rSlo and rSIAP protein near the plasma membrane, when co-expressed in CHO cells. We then investigated the functional effects of rSIAP on the rSlo channel using electrophysiological means. The co-expression of rSIAP accelerated the activation of rSlo channel. These effects were initiated at the micromolar [Ca$\^$2+/]$\_$i/ and gradually increased as [Ca$\^$2+/]$\_$i/ raised. Interestingly, rSIAP decreased the inactivation kinetics of rSlo channel at micromolar [Ca$\^$2+/]$\_$i/, while the rate was accelerated at sub-micromolar [Ca$\^$2+/]$\_$i/. These results suggest that rSIAP may modulate the activity of native BK$\_$Ca/ channel by altering its gating kinetics depending on [Ca$\^$2+/]$\_$i/. To localize critical regions involved in protein-protein interaction between rSlo and rSIAP, a series of sub-domain constructs were generated. We are currently investigating sub-domain interaction using both of yeast two-hybrid method and in vitro binding assay.

  • PDF

Association Analysis of TEC Polymorphisms with Aspirin-Exacerbated Respiratory Disease in a Korean Population

  • Lee, Jin Sol;Bae, Joon Seol;Park, Byung-Lae;Cheong, Hyun Sub;Kim, Jeong-Hyun;Kim, Jason Yongha;Namgoong, Suhg;Kim, Ji-On;Park, Choon-Sik;Shin, Hyoung Doo
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.58-63
    • /
    • 2014
  • The tyrosine-protein kinase Tec (TEC) is a member of non-receptor tyrosine kinases and has critical roles in cell signaling transmission, calcium mobilization, gene expression, and transformation. TEC is also involved in various immune responses, such as mast cell activation. Therefore, we hypothesized that TEC polymorphisms might be involved in aspirin-exacerbated respiratory disease (AERD) pathogenesis. We genotyped 38 TEC single nucleotide polymorphisms in a total of 592 subjects, which comprised 163 AERD cases and 429 aspirin-tolerant asthma controls. Logistic regression analysis was performed to examine the associations between TEC polymorphisms and the risk of AERD in a Korean population. The results revealed that TEC polymorphisms and major haplotypes were not associated with the risk of AERD. In another regression analysis for the fall rate of forced expiratory volume in 1 second ($FEV_1$) by aspirin provocation, two variations (rs7664091 and rs12500534) and one haplotype (TEC_BL2_ht4) showed nominal associations with $FEV_1$ decline (p=0.03-0.04). However, the association signals were not retained after performing corrections for multiple testing. Despite TEC playing an important role in immune responses, the results from the present study suggest that TEC polymorphisms do not affect AERD susceptibility. Findings from the present study might contribute to the genetic etiology of AERD pathogenesis.

Swiprosin-1 Expression Is Up-Regulated through Protein Kinase $C-{\theta}$ and $NF-{\kappa}B$ Pathway in T Cells

  • Kim, Young-Dae;Kwon, Min-Sung;Na, Bo-Ra;Kim, Hye-Ran;Lee, Hyun-Su;Jun, Chang-Duk
    • IMMUNE NETWORK
    • /
    • v.13 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Swiprosin-1 exhibits the highest expression in $CD8^+$ T cells and immature B cells and has been proposed to play a role in lymphocyte biology through actin remodeling. However, regulation of swiprosin-1 gene expression is poorly understood. Here we report that swiprosin-1 is up-regulated in T cells by PKC pathway. Targeted inhibition of the specific protein kinase C (PKC) isotypes by siRNA revealed that $PKC-{\theta}$ is involved in the expression of swiprosin-1 in the human T cells. In contrast, down-regulation of swiprosin-1 by A23187 or ionomycin suggests that calcium-signaling plays a negative role. Interestingly, swiprosin-1 expression is only reduced by treatment with $NF-{\kappa}B$ inhibitors but not by NF-AT inhibitor, suggesting that the $NF-{\kappa}B$ pathway is critical for regulation of swiprosin-1 expression. Collectively, these results suggest that swiprosin-1 is a $PKC-{\theta}$-inducible gene and that it may modulate the late phase of T cell activation after antigen challenge.

Different Gene Expression on Human Blood by Administration of OLT-2 (OLT-2의 복용에 의한 인간 혈중 유전자 발현 변화)

  • Cha, Min-Ho;Moon, Jin-Seok;Jeon, Byung-Hun;Yoon, Yong-Gab;Yoon, Yoo-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.853-860
    • /
    • 2006
  • This study was performed to investigate genes which are differently expressed in human blood by administrating of OLT-2. OLT-2 was medical precipitation composed of three medicinal herbs, Ginseng Radix, Astragali Radix, Glycyrrhizae Radix, and anti-leukemia effect of it was evaluated from Byung Hun Jeon of Wonkwang University this study was approved by Institutional Review Board of Korea Institute of Oriental Medicine (Taejeon, Korea) and four male subjects participated in this study. Gene expressions were evaluated by cDNA chip, in which 24,000 genes were spotted. Hierarchical cluster and biological process against the genes, which expression changes were more than 1.6 fold, were constructed by cluster 3.0 providing Stanford University and EASE(http://apps1 .maid.nih.gov/DAVID). Five groups were clustered according to their expression patterns. Group A contained gene decreased by OLT-2 and increased genes by OLT-2 were involved in Group B, C, D. In biological process, expression of genes involved in cytokine or cell calcium signaling, such as interleukin 18 and G-protein beta 4 were increased, but protein tyrosine phosphatase receptor type c, which function is cell adhesion between antigen-presenting cell and T or B-cell, was decreased by OLT-2. This study provides the most comprehensive available survey of gene expression changes in response to anti-leukemia effect of OLT-2 in human blood.

The Effect of Adiponectin on the Regulation of Filaggrin Expression in Normal Human Epidermal Keratinocytes

  • Choi, Sun Young;Kim, Min Jeong;Ahn, Ga Ram;Park, Kui Young;Lee, Mi-Kyung;Seo, Seong Jun
    • Annals of dermatology
    • /
    • v.30 no.6
    • /
    • pp.645-652
    • /
    • 2018
  • Background: Adiponectin, an adipokine secreted from adipocytes, affects energy metabolism and also shows anti-diabetic and anti-inflammatory properties. Recent studies have reported that adiponectin plays a role in regulating skin inflammation. Objective: This study aimed to investigate the effect of adiponectin on the expression of filaggrin (FLG) in normal human epidermal keratinocytes (NHEKs). Methods: NHEKs were serum-starved for 6h before being treated with adiponectin. Afterward, cell viability was assessed by MTT assay. We also treated with calcium, interleukin (IL)-4, and IL-13 to provide positive and negative comparative controls, respectively. Gene mRNA expression was quantified using real time reverse transcription polymerase chain reaction, and protein expression was evaluated using Western blot. To evaluate the relationship among mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and FLG, we also treated cells with inhibitors for MAPKs JNK, p38, and ERK1/2. Results: FLG and FLG-2 mRNA expression in NHEKs significantly increased after treatment with $10{\mu}g/ml$ adiponectin. Adiponectin also restored FLG and FLG-2 mRNA expression that was otherwise inhibited by treatment with IL-4 and IL-13. Adiponectin induced FLG expression via AP-1 and MAPK signaling. Conclusion: Adiponectin positively regulated the expression of FLG and could be useful as a therapeutic agent to control diseases related to disrupted skin barrier function.