• 제목/요약/키워드: calcium currents

검색결과 78건 처리시간 0.027초

전기화학적 부식촉진 기법을 이용한 철근 콘크리트 부식의 영향평가 (Application of Electrochemical Accelerated Corrosion Technique to Detection of Reinforcing Corrosion in Concrete)

  • 이수열;이재봉;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.675-678
    • /
    • 1999
  • Rebar corrosion in concrete containing both chloride ions and calcium nitrite inhibitors were investigated by the various electrochemical methods. Rebar corrosion was accelerated by applying the impressed current to the rebar in concrete. Effect of chloride content and inhibitors on rebar corrosion were evaluated. Accelerated corrosion technique is the method to measure the time to the initiation of cracks of reinforced concretes, by applying constant voltage between rebar and the stainless steel cathedes. The increase of concentration of chloride ions in concrete result in the increase in anodic currents and the reduction of time to crack. However addition of inhibitors did not improve corrosion resistance of rebar in concrete. Rebar corrosion in concrete with chloride ions and inhibitors was also analyzed by the immersed tests though the mesurement of corrosion potentials.

  • PDF

흰쥐 교감신경세포에서 Norepinephrine 에 의한 칼슘전류 억제에 미치는 Protein Kinase C 의 역할 (Role of Protein Kinase C on Norepinephrine Induced Inhibition of Calcium Current in Rat Sympathetic Neurons)

  • 구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제11권1호
    • /
    • pp.29-38
    • /
    • 2000
  • 지금까지 각종 신경전달물질의 칼슘통로 억제 효과는 일반적으로 protein kinase 의 관여없이 G-protein mediated, membrane-delimited mechanism$^{1)}$ 으로 설명되어왔다. 그러나 최근들어 protein kinase C (PKC)의 활성화가 몇몇 신경전달물질에 의한 칼슘통로 억제효과를 야기하는 중요한 세포내 기전으로 보고되고 있다 그러므로 본 연구에서는 흰쥐 교감신경뉴론을 대상으로 하여 whole cell patch clamp technique을 사용하여 칼슘전류를 기록하고, 세포밖에 norepinephrine (NE)과 함께 PKC agonist 인 phorbol-12, 13-dibutyrate (PDBu)을 투여하면서 PDBu 전 처치로 인하여 NE 에 의한 칼슘전류 억제에 어떤 변화가 초래되는 지를 분석함으로써, 신경전달물질의 칼슘전류 억제효과시 PKC의 역할을 밝히고자 하였다. PDBu (500 nM) 처치는 칼슘전류의 크기를 증가시켰으며 이는 막전압 의존성을 보여 -10 mV ~ +10 mV 의 저분극 자극시 가장 크게 전류크기가 증가하였다. 또한 PDBu 처치는 tail current 의 deactivation을 느리게 하였다. PDBu 는 NE 에 의하여 활성화되는 pertussis toxin 예민성 G protein pathway를 통한 칼슘전류 억제를 감소시켰다. 비특이적인 protein kinase 길항제인 staurosporine (1 $\mu$M) 을 전처치 하고 PDBu를 투여하면 PDBu의 칼슘전류 크기 증가 효과가 소실되었으며 또한 NE에 의한 칼슘전류 억제를 해제하는 PDBu 의 조절효과도 소실되었다. 이상의 결과로부터 Protein Kinase C 가 활성되면 G protein을 경유하여 나타나는 칼슘전류 억제 효과가 소실된다고 결론지을 수 있다. Protein Kinase C 에 의하여 인산화되는 부위가 G-protein 인지 혹은 칼슘통로인 지에 관한 해답을 얻기 위하여는 추후 연구가 진행되어야 한다.

  • PDF

동결 생쥐 난자에서의 calcium 전류 (Calcium current on cryopreservation in mouse oocytes)

  • 강다원;김은심;최창용;박재용;한재희;홍성근
    • 대한수의학회지
    • /
    • 제42권1호
    • /
    • pp.35-43
    • /
    • 2002
  • Cryopreservation is commonly used for an efficient utilization of semen, oocytes and embryos but has disadvantage in the survival, development of the post-thawed eggs. The high risk in the survival, development of eggs after thawing is thought to be caused by inappropriate internal regulation of $Ca^{2+}$ and/or formation of intracellular ice crystals. In this experiment, we tested whether the $Ca^{2+}$ current (iCa), a decisive factor to $Ca^{2+}$ entry, was altered in post-thawed oocytes by using whole cell voltage clamp technique. The quality and survival rates of the oocytes derived from both fresh and frozen groups were examined by morphology and FDA-test. Vitrified oocytes (VOs) were incubated for 4 hr after thawing and then donated to this experiment. Ethyleneglycol-ficoll-galactose (EFG) was used as a cryoprotectant for vitrification. The membrane potential was held at -80 mV and step depolarizations of 250 ms were applied from -50 mV to 50 mV in 10 mV increments. The survival rates showed a higher in VOs vitrified with EFG containing $Ca^{2+}$ than in VOs vitrified with EFG under the $Ca^{2+}$-free condition (82.0% vs 14%). In group with/without $Ca^{2+}$, the survival rates were significantly (P<0.01) difference. In the fresh metaphase II oocytes (FOs), current-voltage (I-V) relationship showed that iCa began to activate at -40 mV and reached its maximum at -10 mV. With same voltage pulses, inward currents were elicited in VOs. I-V relationships observed in VOs were similar to those in FOs. Time constants of activation and inactivation of the inward current shown in VOs were not different to those in FOs. This accordance in I-V relations and time constants in FOs with those in VOs indicates that the inward currents in FOs are unaltered by vitrification and thawing. Therefore, vitrification with EFG does not play as a factor to deteriorate $Ca^{2+}$ entry across the membrane of the oocytes.

Bile Acid Inhibition of N-type Calcium Channel Currents from Sympathetic Ganglion Neurons

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa;Cho, Eui-Sic
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.25-30
    • /
    • 2012
  • Under some pathological conditions as bile flow obstruction or liver diseases with the enterohepatic circulation being disrupted, regurgitation of bile acids into the systemic circulation occurs and the plasma level of bile acids increases. Bile acids in circulation may affect the nervous system. We examined this possibility by studying the effects of bile acids on gating of neuronal (N)-type $Ca^{2+}$ channel that is essential for neurotransmitter release at synapses of the peripheral and central nervous system. N-type $Ca^{2+}$ channel currents were recorded from bullfrog sympathetic neuron under a cell-attached mode using 100 mM $Ba^{2+}$ as a charge carrier. Cholic acid (CA, $10^{-6}M$) that is relatively hydrophilic thus less cytotoxic was included in the pipette solution. CA suppressed the open probability of N-type $Ca^{2+}$ channel, which appeared to be due to an increase in (no activity) sweeps. For example, the proportion of sweep in the presence of CA was ~40% at +40 mV as compared with ~8% in the control recorded without CA. Other single channel properties including slope conductance, single channel current amplitude, open and shut times were not significantly affected by CA being present. The results suggest that CA could modulate N-type $Ca^{2+}$ channel gating at a concentration as low as $10^{-6}M$. Bile acids have been shown to activate nonselective cation conductance and depolarize the cell membrane. Under pathological conditions with increased circulating bile acids, CA suppression of N-type $Ca^{2+}$ channel function may be beneficial against overexcitation of the synapses.

신경세포 배양법을 이용한 methamphetamine과 cadmium의 신경독성 평가 (Neurotoxicity Assessment of Methamphetamine and Cadmium Using Cultured Neuronal Cells of Long-Evans Rats)

  • 조대현;김준규;정용;이봉훈;김은엽;김정구;조태순;김진석;문화회
    • Toxicological Research
    • /
    • 제12권1호
    • /
    • pp.69-79
    • /
    • 1996
  • Primary culture of cerebellar neuronal cells derived from 8-day old Long-Evans rats was used. Pure granule cells, astrocytes or mixed cells culture systems were prepared. These cells were differentiated and developed synaptic connections. And the astrocytes were identified by immunostaining with glial fibrillary acidic protein (GFAP). Methamphetamine (MAP), which acts on dopaminergic system and cadmium (Cd), a toxic heavy metal, were applied and biochemical assays and electrophysiological studies were performed. $LC_50$ values estimated by MTT assay of MAP and Cd were 3 mM and 2$\mu M$ respectively. Cells were treated with 1 mM or 2 mM MAP and 1$\mu M$ $CdCl_2$ for 48 hour, and the incubation media were analyzed for the content of released LDH. MAP (2 mM) and Cd significantly increased the LDH release. Cell viability was decreased in both groups and some cytopathological changes like cell swelling or vacuolization were seen. The cerebellar granule cells were used for measuring membrane currents using whole-cell clamp technique. Sodium and potassium currents were not affected by MAP neither Cd, but calcium current was significantly reduced by Cd but not affected by MAP. Therefore, in vitro neurotoxicity test system using neuronaI cells and astrocytes cultures were established and can be used in screening of potential neurotoxic chemicals.

  • PDF

Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175

  • Wijerathne, Tharaka Darshana;Kim, Jihyun;Yang, Dongki;Lee, Kyu Pil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.241-249
    • /
    • 2017
  • Plasma membrane hyperpolarization associated with activation of $Ca^{2+}$-activated $K^+$ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary ${\gamma}^2$-subunit, LRRC52 (leucine-rich-repeat-containing 52), is known to mediate the pH-sensitive, sperm-specific $K^+$ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical $BK_{Ca}$ activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting ${\gamma}^2$ subunit, hLRRC52. As previously reported, Slo3 $K^+$ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 $K^+$ current, and internal alkalinization and $Ca^{2+}$ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 $K^+$ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular $Ca^{2+}$. In contrast, elevation of intracellular $Ca^{2+}$ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate $Ca^{2+}$-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm.

토끼 단일 심방근 세포에서 Na-Ca 교환전류의 특성에 관한 연구 (The Properties of Na-Ca Exchange Current in Single Atrial Cells of ,The Rabbit)

  • 염욱;호원경;서경필
    • Journal of Chest Surgery
    • /
    • 제22권4호
    • /
    • pp.548-561
    • /
    • 1989
  • In single atrial cells isolated from the rabbit the properties of inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The current was recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of * 70 mV. Followings are the results obtained: 1. When stimulated every 30 seconds, the inward currents were activated and reached peak values 6-12 ms after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2. The current decayed spontaneously from the peak activation and the time course of the relaxation showed two different phases fast and slow phase. The time constants were 10-18 ms and 60-140 ms, respectively. 3. The recovery of inward current was tested by paired pulse of various intervals. The peak current recovered exponentially with time constant of 140 ms and 1 p M isoprenaline accelerated the recovery process. 4. Relaxation time course was also affected by pulse interval and time constant of the fast phase was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5. The peak activation was increased in magnitude by long prepulse stimulation, 5 p M Bay K, 1 p M isoprenaline or internal and external application of c-AMP. 6. The relaxation time constant of the fast phase was prolonged by 5 p M Bay K or c-AMP, and shortened by isoprenaline. However the time course of the slow relaxation phase was not so much changed. From the above results, it could be concluded that increase of the calcium current by Bay K or c-AMP results in the potentiation and prolongation of intracellular calcium transient, and the facilitation of Ca uptake by SR might be a mechanism of shortening the time constant of current relaxation by short interval stimulation or isoprenaline.

  • PDF

Testosterone Relaxes Rabbit Seminal Vesicle by Calcium Channel Inhibition

  • Kim, Jong-Kok;Han, Woo-Ha;Lee, Moo-Yeol;Myung, Soon-Chul;Kim, Sae-Chul;Kim, Min-Ky
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권2호
    • /
    • pp.73-77
    • /
    • 2008
  • Recent studies have documented that testosterone relaxes several smooth muscles by modulating $K^+$ channel activities. Smooth muscles of seminal vesicles playa fundamental role in ejaculation, which might involve testosterone. This study was aimed to assess the role of testosterone in seminal vesicular motility by studying its effects on contractile agents and on the ion channels of single vesicular myocytes in a rabbit model. The contractile responses of circular smooth muscle strips of rabbit seminal vesicles to norepinephrine ($10{\mu}M$), a high concentration of KCI (70 mM), and testosterone ($10{\mu}M$) were observed. Single vesicular myocytes of rabbit were isolated using proteolytic enzymes including collagenase and papain. Inside-out, attached, and whole-cell configurations were examined using the patch clamp technique. The applications of $10{\mu}M$ norepinephrine or 70 mM KCl induced tonic contractions, and $10{\mu}M$ testosterone (pharmacological concentration) evoked dose-dependent relaxations of these precontracted strips. Various $K^+$ channel blockers, such as tetraethylammonium (TEA; $10{\mu}M$), iberiotoxin ($0.1{\mu}M$), 4-aminopyridine (4-AP, $10{\mu}M$), or glibenclamide ($10{\mu}M$) rarely affected these relaxations. Single channel data (of inside-out and attached configurations) of BK channel activity were also hardly affected by testosterone ($10{\mu}M$). On the other hand, however, testosterone reduced L-type $Ca^{2+}$ currents significantly, and found to induce acute relaxation of seminal vesicular smooth muscle and this was mediated, at least in part, by $Ca^{2+}$ current inhibition in rabbit.

Differential Expression of Four $Ca_v$3.1 Splice Variants in the Repeat III-IV Loop

  • Lee, Sang-Soo;Park, You-Mi;Kang, Ho-Won;Bang, Hyo-Weon;Jeong, Seong-Woo;Lee, Jung-Ha
    • Animal cells and systems
    • /
    • 제12권3호
    • /
    • pp.137-141
    • /
    • 2008
  • Molecular cloning revealed the three isoforms($Ca_v3.1,\;Ca_v3.2,\;and\;Ca_v3.3$) of the T-type calcium channel subfamily. Expression studies exhibited their distinctive electrophysiological and pharmacological properties, accounting for diverse properties of T-type calcium channel currents previously characterized from isolated cells. However, electrophysiological properties of ion channels have shown to be more diversified by their splice variants. We here searched splice variants of rat $Ca_v3.1$ T-type channel by reverse-transcription-polymerase chain reaction(RT-PCR) to further explore diversity of $Ca_v3.1$. Interestingly, analyses of cloned RT-PCR products displayed that there were at least four splicing variants of rat $Ca_v3.1$ in the loop connecting repeats III and IV. Southern blot analyses indicated that the predominantly detected variant in brain was $Ca_v3.1a$(492 bp), which were rarely detected in most of peripheral tissues. Other two variants($Ca_v3.1c$, 546 bp; $Ca_v3.1d$, 525 bp) were detected in most of the tissues examined. The smallest isoform($Ca_v3.1b$, 471 bp) was rarely detected all the tissues. Electrophysiological characterization of the splicing variants indicated that the splice variants differ in inactivation kinetics and the voltage dependence of activation and inactivation as well.

Long-Term Potentiation of Excitatory Synaptic Strength in Spinothalamic Tract Neurons of the Rat Spinal Cord

  • Hur, Sung Won;Park, Joo Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권6호
    • /
    • pp.553-558
    • /
    • 2013
  • Spinal dorsal horn nociceptive neurons have been shown to undergo long-term synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Here, we focused on the spinothalamic tract (STT) neurons that are the main nociceptive neurons projecting from the spinal cord to the thalamus. Optical technique using fluorescent dye has made it possible to identify the STT neurons in the spinal cord. Evoked fast mono-synaptic, excitatory postsynaptic currents (eEPSCs) were measured in the STT neurons. Time-based tetanic stimulation (TBS) was employed to induce long-term potentiation (LTP) in the STT neurons. Coincident stimulation of both pre- and postsynaptic neurons using TBS showed immediate and persistent increase in AMPA receptor-mediated EPSCs. LTP can also be induced by postsynaptic spiking together with pharmacological stimulation using chemical NMDA. TBS-induced LTP observed in STT neurons was blocked by internal BAPTA, or $Ni^{2+}$, a T-type VOCC blocker. However, LTP was intact in the presence of L-type VOCC blocker. These results suggest that long-term plastic change of STT neurons requires NMDA receptor activation and postsynaptic calcium but is differentially sensitive to T-type VOCCs.