• Title/Summary/Keyword: calcium concentration

Search Result 1,648, Processing Time 0.024 seconds

The Production of Calcium Lactate by Lactobacillus sporogenes II. Production of Calcium Lactate (Lactobacillus sporgenes에 의한 젖산칼슘 생산 II. 젖산 칼슘 제조)

  • Lee, Gye-Geun;Kim, Yeong-Man;Min, Gyeong-Chan
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.102-107
    • /
    • 1988
  • Production of calcium lactate very useful for medical supplies of Ca-therapy was obtained by lactic acid fermentation of lactobacillus sporogenes, a spore forming lactic acid bacterium. Corn steep liquor 1%, soybean enzyme hydrolysate 3%, yeast extract powder 2% can substitute for yeast extract and peptone as nutrient sort traces in fermentation medium using 10% glucose concentration. In the calcium lactate production medium containing yeast extract powder 2%, glucose 18%, CaCO3 12%, the lactic acid fermentation was carried out at 45$^{\circ}C$ for 4days with continuous agitation of 100 rpm. As results, fermentation yield was 97.5%. The five steps such as protein coagulation, decolorizing evaporating, crystallizing, and drying were carried out to harvest calcium lactate from 10l of supernatant of fermented medium to be removed cell and CaCO3. As results, 2065.0g of white crystal calcium lactate dihyrate was recovered and a yield of 84.9% was obtained.

  • PDF

Activation of Phospholipase D in Rat Thymocytes by Sphingosine

  • Lee, Young-kyun;Choi, Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1451-1489
    • /
    • 2002
  • Sphingosine is known to regulate a wide range of cell physiology including growth, differentiation, and apoptosis. In this study, we examined the effect of sphingosine on the phospholipase D (PLD) activity in rat thymocytes. Sphingosine potently stimulated PLD in the absence of extracellular calcium, while depletion of intracellular calcium by BAPTA/AM treatment completely blocked activation of PLD by sphingosine. Sphingosine-induced increase of the intracellular calcium concentration was confirmed using a fluorescent calcium indicator Fluo-3/AM. A phosphoinositide-specific phospholipase C inhibitor U73122 partially inhibited the stimulation of PLD by sphingosine. When mouse PLD2 gene was transfected into mouse thymoma EL4 cells, which lack intrinsic PLD activity, sphingosine could stimulate PLD2 significantly while overexpression of human PLD1 had no effect. Taken together, the sphingosine-stimulated PLD activity in rat thymocytes is dependent on the mobilization of intracellular calcium and appears to be due to the PLD2 isoform.

Effect of Intracellular Calcium Level on the Hybridoma Cell Growth and Monoclonal Antibody Production (세포내 calcuim 농도가 하이브리도마 세포 성장 및 단일클론항체 생산에 미치는 영향)

  • 박재성;남민희;박선호
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.585-592
    • /
    • 1998
  • The effect of intracellular Ca2+ level on the hybridoma cell growth and monoclonal antibody(MAb) production was examined. For the manipulation of intracellular Ca2+ concentration, the cells were treated with A23187, ryanodine, and thapsigargin at about 1x106 cells/mL. The treated cells were recultivated by using the Iscove's Modified Dulbecco's Medium(MDM) containing 1.49mM CaCl2. The ryanodine-treated cells showed better cell growth, MAb concentration, and specific MAb productivity than others. In comparison with control, the maximum cell concentration, MAb concentration, and specific MAb productivity were increased by 40.6%, 48.1% and 83.3%, respectively. Confocal microscopic images of Fura-2/AM loaded cells indicate that the increase in intracellular Ca2+ level can enhance the MAb productivity by allowing the calcium influx into the endoplasmic reticulumn.

  • PDF

Possibility of cementation of soft soil using Bacteria (Bacteria를 이용한 연약한 흙의 고결화 가능성)

  • Kim, Dae-Hyeon;Kim, Ho-Chul;Park, Kyoung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.379-391
    • /
    • 2010
  • In order to understand the mechanism of cementation of soft soils treated with bacteria, three types of specimens(untreated, normal bacteria concentration treated, and high bacteria concentration treated) were made. Scanning Electron Microscope(SEM), EDX and X-ray diffraction(XRD) analyses were performed on the soft silt and loose sand specimens. Compared with the untreated specimen, a clearer cementation between particles was observed in the high bacteria concentration treated specimen. Based on the scanning electron microscope(SEM) EDX analyses, more calcium carbonate was observed in the specimen treated with high bacteria concentration than other specimens. On the basis of the preliminary results, it appears that microbial cementation can occur in the soft soil. Further study on the cementation of soils using bacteria is necessary to validate this result.

  • PDF

The Detection of Intracranial Calcification by MR : Experimental Model (실험적 모델을 이용한 자기공명영상에서 석회화의 인지)

  • 박승진
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 1994
  • Purporse : It is known that detection of calcification by MRI is difficulty in intracranial calcified lesions, but author tried to evaluate the signal intensity image of calcification by MR with experimental model. Subjects & Methods : Author analyzed and compared with values of calcium carbonate and hydroxyapatite phantoms by each concentration (10, 20, 30, 40, 50%) and size(1-10mm), measured ROI attenuating from CT and MRI(TlWI & T2WI). Results : The high concentration of calcium carbonate is, the lower the signal intensity of calcium carbonate phantom is both T1 & T2WI. For concentration of Hydroxyapatite of up to 30% by weight the signal intensity on standard T1 weighted images increased but subsequently decreased. Hyperintensity does not preclude calcification as a cause of the signal alteration-an observation that all radiologists interpreting MR images need to be aware of. Conclusion: The signal intensity of intracranial calcification is various on MR imaging in concerning with components, concentration, & size of calcification, and especially high signal intensity of intracranial calcification noted differencial diagnosis.

  • PDF

N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

  • Hasan, Md. Ashraful;Ahn, Won-Gyun;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.449-457
    • /
    • 2016
  • N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though $Ca^{2+}$ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ($[Ca^{2+}]_i$) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on $[Ca^{2+}]_i$ in human neutrophils. We observed that NAC ($1{\mu}M{\sim}1mM$) and cysteine ($10{\mu}M{\sim}1mM$) increased $[Ca^{2+}]_i$ in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in $[Ca^{2+}]_i$ in human neutrophils was observed. In $Ca^{2+}$-free buffer, NAC- and cysteine-induced $[Ca^{2+}]_i$ increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in $[Ca^{2+}]_i$ in human neutrophils occur through $Ca^{2+}$ influx. NAC- and cysteine-induced $[Ca^{2+}]_i$ increase was effectively inhibited by calcium channel inhibitors SKF96365 ($10{\mu}m$) and ruthenium red ($20{\mu}m$). In $Na^+$-free HEPES, both NAC and cysteine induced a marked increase in $[Ca^{2+}]_i$ in human neutrophils, arguing against the possibility that $Na^+$-dependent intracellular uptake of NAC and cysteine is necessary for their $[Ca^{2+}]_i$ increasing activity. Our results show that NAC and cysteine induce $[Ca^{2+}]_i$ increase through $Ca^{2+}$ influx in human neutrophils via SKF96365- and ruthenium red-dependent way.

Marked Change in Parameter Level in Patient with Renal Disease

  • Bloh, Anmar Hameed;Obead, Dr. Antesar Rheem;Wahhab, Doaa Nassr
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.92-95
    • /
    • 2022
  • Failure Renal is the function of the kidneys to remove waste products and keep them on the periphery. and minerals for the body. Chronic renal failure is a syndrome characterized by a slow, irreversible deterioration of renal function due to the slow destruction of renal parenchyma. Calcium is one of the important minerals that the body contains in the blood and important tissues, and it has an important role in vital processes such as muscle contraction, nerve impulse conduction, the efficiency of heart muscle work, and blood clotting processes. The aim of the study is to study and compare calcium levels in men and women. It includes studying abnormal levels of calcium that cause many diseases, including chronic renal failure, and studying changes associated with renal failure. The method of this study was conducted on patients with chronic renal failure at Murjan Teaching Hospital in Babylon city during the period. The study included a sample of 70 patients (40 males, 30 females) with chronic renal failure, their ages ranged from 30-65, and 60 (30 males, 30 females) healthy without the disease of the same age. The result was a significant decrease in the number of red and white blood cells, hemoglobin concentration, hematocrit and platelets in patients with chronic renal failure, The result has been showed significant level in enzymes activity for transfer of amine group (alanine amino transferase, aspartate amino transferas) and phosphatase alkaline and also concentration of total bilirubin in patient with compare with healthy, Significantly increases, were found in the concentration of urea, uric acid and creatinine, as well as the concentration of calcium and phosphorous ions in the blood serum of patients compared to healthy controls.

Effect of preharvest application of chitosan on the growth and quality of peach fruit (Prunus persica L.)

  • Bae, Tae-Min;Seo, Joung-Seok;Kim, Jin-Gook;Kim, Do-Kyung;Chun, Jong-Pil;Hwang, Yong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.601-614
    • /
    • 2018
  • Chitosan with a natural antimicrobial property has been introduced to protect horticultural crops from diseases as an environmentally friendly method. The purpose of this study was to investigate the effects of the pre-harvest application of chitosan on growth and quality during the late stage of fruit development and on the simulated marketing of the peach fruit (Prunus persica L.). The application of chitosan with calcium chloride ($100mg{\cdot}L^{-1}$) three times at one week intervals 4 weeks before the harvest significantly increased the fruit weight, changed the fruit shape, and reduced the fruit length/diameter ratio giving the peach fruits a round oblate shape. The calcium treatment contributed to enhancing or maintaining the storage potential by increasing the flesh firmness. However, at higher concentrations of $CaCl_2$, i.e., > $600mg{\cdot}L^{-1}$, the positive effects of the chitosan application were offset, and fruit growth was not affected by calcium alone. The application of the chitosan/calcium mixture delayed fruit softening; however, this effect was shortened when the storage temperature was $20^{\circ}C$ rather than $15^{\circ}C$. The internal quality of the fruit was profoundly affected by the concentration of calcium added to the chitosan, and delayed fruit maturation was observed at a higher concentration of calcium. The pre-harvest application of chitosan with calcium contributes to the enhancement of food safety by inhibiting the occurrence of diseases during postharvest handling. Considering the above results, chitosan has the potential to improve both the yield of peach fruits and their storability. Because chitosan can enhance the freshness and shelf-life of fresh produce, it is necessary to examine its effects on other horticultural crops.

Acute Ethanol Reduces Calcium Signaling Elicited by K+ Depolarization in Cultured Cerebellar Granule Neurons

  • Kim, Jong-Nam
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.63-66
    • /
    • 2000
  • The effects of acute ethanol on the high K+ induced $Ca^{2+}}$ signals were examined from primary cultures of cerebellar granule neurons. $Ca^{2+}}$ signals were measured with Calcium Green-1 based microscopic video imaging. Because $Ca^{2+}}$ signal was low in most of granule neurons without stimuli, high KCI was used for depolarization. In most case, acute exposure to ethanol reduced the peak amplitude of the $Ca^{2+}}$ signals, induced by high K+, even though low concentration of ethanol(2~10mM) was used and the effects lasted more than 30min. In was also possible to see differences of ethanol inhibition, i.e. the temporal pattern of $Ca^{2+}}$ signal reductions and the strength of inhibition of $Ca^{2+}}$ signals in cerebellar granule neurons. These results indicate that low concentration of ethanol has diverse actions on the $Ca^{2+}}$ signals in cerebellar granule neurons.

  • PDF

The Role of Milk Products in Metabolic Health and Weight Management

  • Zemel, Michael B.
    • Journal of Dairy Science and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.17-28
    • /
    • 2010
  • A substantial body of evidence has emerged over the last decade in support of the novel concept that dietary calcium and dairy foods play an important role in regulating energy metabolism and thereby promote healthy weight management and reduce obesity risk. This concept has been demonstrated in experimental animals studies, cross-sectional and prospective population studies and a number of randomized clinical trials. Notably, the effects of dairy foods in weight management are more consistent than the effects of supplemental calcium across clinical trials, and calcium per se is responsible for approximately 40-50% of the effects of dairy. The calcium component is only effective in individuals with chronically low calcium intake, as it serves to prevent the endocrine response to low calcium diets which otherwise favors adipocyte energy storage; calcium also serves to promote energy loss via formation of calcium soaps in the gastrointestinal tract and thereby reduce fat absorption. The calcium-independent anti-obesity bioactivity of dairy resides primarily in whey. The key components identified to date are leucine and bioactive peptides resulting from whey protein digestion. The high concentration of leucine in whey stimulates a repartitioning of dietary energy from adipose tissue to skeletal muscle where it provides the energy required for leucine-stimulated protein synthesis, resulting in increased loss of adipose tissue and preservation of skeletal muscle mass during weight loss. Finally, dairy rich diets suppress the oxidative and inflammatory responses to obesity and thereby attenuate the diabetes and cardiovascular disease risk associated with obesity.

  • PDF