• Title/Summary/Keyword: calcium channel blocker

Search Result 131, Processing Time 0.028 seconds

Effect of Peptide YY on Vascular Smooth Muscle Contractility (Peptide YY의 혈관 평활근 수축성에 미치는 효과)

  • Lee, Kwang-Youn;Kim, Won-Joon;Ha, Jeoung-Hee;Kwon, Oh-Cheol
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-33
    • /
    • 1990
  • The responsiveness of various arterial smooth muscles isolated from rabbit to peptide YY (PYY) and the calcium source responsible for the muscles to contract were studied in vitro. PYY contracted the muscle strips of femoral, basilar and common iliac arteries more sensitively than renal, superior mesenteric and common carotid arteries. Common carotid and renal arteries were less sensitive to PYY $(p{\leqslant}0.05)$ than to NE; and basilar artery was more sensitive to PYY$(p{\leqslant}0.01)$ than to NE. A calcium channel blocker, verapamil and an inhibitor of intracellular calcium release, 3, 4, 5-Trime-thoxybenzoic arid 8-(diethylamino)octyl ester [TMB-8] significantly $(p{\leqslant}0.001)$ suppressed the concentration-response of the strips from femoral artery to PYY. When both verapamil and TMB-8 existed in normal PSS, the concentration-response to PYY was inhibited almost completely; and a similar suppression was observed when the muscle was incubated in calcium-free, ethyleneglycol-bis-(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid [EGTA] containing PSS. The results of these experiments suggest that increased PYY activity in circulation may result in the more sensitive increase in the intracranial vascular resistance and the cerebral arterial pressure than the increased sympathetic activity and that both intra- and extracellular calcium are to be utilized for the PYY-induced contraction on arterial smooth muscle.

  • PDF

Mechanism of Inhibitory Effect of Imipramine on Isolated Rat Detrusor Muscle in Relation to Calcium Modulation (흰쥐 적출 방광 배뇨근의 수축성에 대한 Imipramine의 작용과 Calcium동원 기전과의 관계)

  • Lee, Jong-Bum;Yoo, Kae-Joon;Ha, Jeoung-Hee;Kwon, Oh-Cheol;Lee, Kwang-Youn;Kim, Won-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.81-89
    • /
    • 1992
  • Enuresis is a common voiding disorder among children. There are several therapeutic regimens for the disorder available today; behavioral therapies, psychotherapy, bladder training, sleep interruption, hypnosis and drug therapy. Recently, the efficacy of drug therapy has been acknowledged, particularly of antidepressants. Among the tricyclic antidepressants, imipramine is most frequently employed for the treatment of enuresis. Present study was undertaken to investigate the mechanism of imipramine on the contractility of urinary bladder in relation to the calcium modulation using isolated strips of rat detrusor urinae. 1. The electric fileld stimulation-induced contraction was abolished by imipramine, but partially inhibited by atropine. 2. Imipramine reduced the basal tone and diminished the phasic activity of detrusor muscle concentration-dependently, which was similar to that of diltiazem, a calcium channel blocker. 3. Imipramine suppressed the maximal responses and shifted the concentration-response curves of bethanechol and ATP to right. 4. Imipramine inhibited the calcium-induced recovery of tension in calcium-free physiologic salt solution (PSS) with a mode of action similar to that of diltizaem. 5. A23187, a calcium ionophore recovered the basal tone which had been reduced by imipramine in normal PSS. 6. In calcium-free PSS, A23187 could recover the abolished basal tone with the pretreatment of imipramine, but it exerted a partial recovery with the pretreatment of TMB-8, an inhibitor of intracellular calcium release. Based on these results, it is suggested that the inhibitory action of imipramine on the detrusor muscle exerted in part by blockade of the muscarinic and purinergic receptors, and interference with the influx of extracellular calcium, but not with the release of intracellular stored calcium, is involved in its mechanism of action.

  • PDF

Effect of Cholecystokinin on Serotonin Release from Cultured Neurons of Fetal Rat Medulla Oblongata (연수 신경세포 배양에서 세로토닌 분비에 대한 Cholecystokinin의 작용)

  • Song Dong-Keun;Cho Hyun-Mi;Lee Tae-Hee;Suh Hong-Won;Kim Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.11-15
    • /
    • 1995
  • Serotonergic neurons in medulla oblongata play an important role in the endogenous descending pain inhibitory system. To illucidate the factors involved in the regulation of medullary serotonergic neurons, we studied the effects of cholecystokinin (CCK) and agents acting on various second messenger systems on 5-hydroxytryptamine (5-HT) release from cultured neurons of rat fetal (gestational age 14th day) medulla oblongata. Cultured cells maintained for 10 days in vitro were stimulated for 48 hours with CCK or other neuropeptides at 10 micromolar concentration. CCK ($10{\mu}M$) and substance P ($10{\mu}M$) significantly increased. 5-HT release. However, somatostatin, proctolin, thyrotropin releasing hormone, and interleukin-6 did not have any effects on 5-HT release. Nimodipine ($1{\mu}M$), a calcium channel blocker, almost completely, and calmidazolium ($1{\mu}M$), a calmodulin antagonist, significantly inhibited the CCK-induced 5-HT release. The total 5-HT content (intracellular 5-HT plus released 5-HT) was significantly increased by CCK. However, the intracellular 5-HT content was not significantly changed by CCK. Forskolin ($5{\mu}M$), an adenylate cyclase activiator, but not $2{\mu}M$ phorbol myristate acetate (PMA), a protein kinase C activator, significantly enhanced 5-HT release. The total 5-HT content (intracellular 5-HT plus released 5-HT) was significantly increased by forskolin. However, the intracellular 5-HT content was not significantly changed by forskolin. PMA had no effect on intracellular 5-HT levels. These results suggest that CCK regulates serotonergic neurons in the medulla oblongata by enhancing 5-HT secretion through calcium influx and caimodulin, and that cyclic AMP system but not protein kinase C system is involved in 5-HT release.

  • PDF

The Influence of Several Drugs Affecting $Ca^{2+}$ Influx on Frequency-tension Curve of Rat Left Atrium (쥐의 좌심방에서 세포막을 통한 $Ca^{2+}\;Flux$에 영향을 주는 약물이 자극빈도-장력 곡선에 미치는 영향)

  • Kim, Chan-Yun;Ahn, Sok-Kyun;Suh, Chang-Kook;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.329-337
    • /
    • 1989
  • Cardiac muscles show stimulation frequency-dependent tension changes i.e. Bowditch phenomenon and Woodworth phenomenon, the former is an increase of tension with the increase of stimulation frequency, whereas the latter is an increase of tension with a decrease of stimulation frequency. Bowditch phenomenon is seen in the range of frequency 1.0 cps and above, and Woodworth phenomenon below the frequency 1.0 cps in the most of mammalian cardiac atrium. To throw some light on the possible mechanism of both phenomena in rat atrium, influences of drugs affecting $Ca^{2+}$ influx through the plasma membrane $(verapamil,\;La^{3+},\;norepinephrine)$ and $Ca^{2+}$ release from sarcoplasmic reticulum (SR) on frequency-tension curve were studied. The results obtained are summarized as follows: 1) At low temperature $(27.5^{\circ}C)$, both Bowditch and Woodworth phenomenon were demonstrated. But Bowditch phenomenon disappeared at the temperature above $(32.5^{\circ}C)$. 2) At $(27.5^{\circ}C)$, in the presence of verapamil, a $Ca^{2+}$ channel blocker, a time course of change in the frequency-tension was studied. It was found that Bowditch phenomenon was affected before the Woodworth phenomenon, then the former was completely disappeared. At $(32.5^{\circ}C)$, where no Bow-ditch is seen in normal atrial muscle, Bowditch phenomenon was reappeared by an administration of norepinephrine suggesting again that slow inward current of such as $Ca^{2+}$ channel is closely related to Bowditch phenomenon. 3) At $27.5^{\circ}C$, in the presence of $La^{3+}$, although tensions were decreased at all stimulation frequencies, Bowditch and Woodworth phenomenon were still demonstrated. However in the presence of both $La^{3+}$ and verapamil, Bowditch phenomena was disappeared suggesting that $La^{3+}$ is less effective in blocking $Ca^{2+}$ channel than verapamil. 4) At $27.5^{\circ}C$, in the presence of ryanodine, an inhibitor of calcium release from SR, Woodworth phenomenon was disappeared, which was consistent with previous reports of others, suggesting that $Ca^{2+}$ release from SR is closely related to Woodworth phenomenon. From the above findings, it may be concluded that Bowditch phenomenon is dependent on the magnitude of $Ca^{2+}$ influx through slow channel and Woodworth phenomenon is dependent on the amount of $Ca^{2+}$ stored in SR.

  • PDF

PKHD1 Gene Silencing May Cause Cell Abnormal Proliferation through Modulation of Intracellular Calcium in Autosomal Recessive Polycystic Kidney Disease

  • Yang, Ji-Yun;Zhang, Sizhong;Zhou, Qin;Guo, Hong;Zhang, Ke;Zheng, Rong;Xiao, Cuiying
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • Autosomal recessive polycystic kidney disease (ARPKD) is one of the important genetic disorders in pediatric practice. Mutation of the polycystic kidney and hepatic disease gene 1 (PKHD1) was identified as the cause of ARPKD. The gene encodes a 67-exon transcript for a large protein of 4074 amino acids termed fibrocystin, but its function remains unknown. The neoplastic-like in cystic epithelial proliferation and the epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) axis overactivity are known as the most important characteristics of ARPKD. Since the misregulation of $Ca^{2+}$ signaling may lead to aberrant structure and function of the collecting ducts in kidney of rat with ARPKD, present study aimed to investigate the further mechanisms of abnormal proliferation of cystic cells by inhibition of PKHD1 expression. For this, a stable PKHD1-silenced HEK-293T cell line was established. Then cell proliferation rates, intracellular $Ca^{2+}$ concentration and extracellular signal-regulated kinase 1/2 (ERK1/2) activity were assessed after treatment with EGF, a calcium channel blocker and agonist, verapamil and Bay K8644. It was found that PKHD1-silenced HEK-293T cell lines were hyperproliferative to EGF stimulation. Also PKHD1-silencing lowered the intracellular $Ca^{2+}$ and caused EGF-induced ERK1/2 overactivation in the cells. An increase of intracellular $Ca^{2+}$ in PKHD1-silenced cells repressed the EGF-dependent ERK1/2 activation and the hyperproliferative response to EGF stimulation. Thus, inhibition of PKHD1 can cause EGF-induced excessive proliferation through decreasing intracellular $Ca^{2+}$ resulting in EGF-induced ERK1/2 activation. Our results suggest that the loss of fibrocystin may lead to abnormal proliferation in kidney epithelial cells and cyst formation in ARPKD by modulation of intracellular $Ca^{2+}$.

Cardiovascular Responses and Nitric Oxide Production in Cerebral Ischemic Rats

  • Shinl, Chang-Yell;Lee, Nam-In;Je, Hyun-Dong;Kim, Jeong-Soo;Sung, Ji-Hyun;Kim, Dong-Seok;Lee, Doo-Won;Bae, Ki-Lyong;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.697-703
    • /
    • 2002
  • We investigated that the role of nitric oxide (NO) on ischemic rats in brain and heart. Ischemia was induced by both common carotid arteries (CCA) occlusion for 24h following reperfusion. Then tissue samples were removed and measured NOx. In brain, NOx was increased by about 40% vs. normal and it was significantly inhibited by aminoguanidine, selective iNOS inhibitor. This result showed that NOx concentration was increased by iNOS. We investigated the role of $Ca^{2+}$ during ischemia. Nimodipine, L-type calcium channel blocker, didn't inhibit the increases of NOx concentration during ischemia. It suggested that increased NOx was due to calcium-independent NOS. MK-801, which N-methyl-D-aspartate (NMDA) receptor antagonist, didn't significantly prevent the increases of NOx. In heart, ischemia caused NOx decrease and it is inconsistent with NOx increase in brain. Aminoguanidine and nimodipine didnt affect on NOx decrease. But MK-801 more lowered NOx concentration than those of ischemia control group. It seemed that $Ca^{2+}$ influx in heart partially occurred via NMDA receptor and inhibited by NMDA receptor antagonist. The mean arterial pressure (MAP) in ischemic rats after 24h of CCA occlusion was decreased when compared to normal value, whereas the heart rates (HR) was not different between two groups. Aminoguanidine or MK801 had no effect on MAP or HR, but nimodipine reduced MAP. There was no difference the effects of aminoguanidine, nimodipine, or MK-801, on MAP and HR between normal rats and ischemic rats. In summary, ischemic model caused an increase of NOx concentration, suggesting that this may be produced via iNOS, which is calcium independent in brain. However in heart, ischemia decreased NOx concentration and NMDA receptor was partially involved. The basal MAP was decreased in ischemic rats but HR was not different from normal control, suggesting that increased NOx in brain of ischemic rat may result in the hypotension.

[$Ca^{2+}$ Sensitization Mechanism in Stretch-induced Myogenic Tone

  • Kim, Jung-Sup;Ryu, Sung-Kyung;Ahn, Duck-Sun;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • It has been suggested that $Ca^{2+}$ sensitization mechanisms might contribute to myogenic tone, however, specific mechanisms have not yet been fully identified. Therefore, we investigated the role of protein kinase C (PKC)- or RhoA-induced $Ca^{2+}$ sensitization in myogenic tone of the rabbit basilar vessel. Myogenic tone was developed by stretch of rabbit basilar artery. Fura-2 $Ca^{2+}$ signals, contractile responses, PKC immunoblots, translocation of PKC and RhoA, and phosphorylation of myosin light chains were measured. Stretch of the resting vessel evoked a myogenic contraction and an increase in the intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ only in the presence of extracellular $Ca^{2+}$. Stretch evoked greater contraction than high $K^+$ at a given $[Ca^{2+}]_i.$ The stretch-induced increase in $[Ca^{2+}]_i$ and contractile force were inhibited by treatment of the tissue with nifedipine, a blocker of voltage-dependent $Ca^{2+}$ channel, but not with gadolinium, a blocker of stretch-activated cation channels. The PKC inhibitors, H-7 and calphostin C, and a RhoA-activated protein kinase (ROK) inhibitor, Y-27632, inhibited the stretch-induced myogenic tone without changing $[Ca^{2+}]_i.$ Immunoblotting using isoform-specific antibodies showed the presence of $PKC_{\alpha}$ and $PKC_{\varepsilon}$ in the rabbit basilar artery. $PKC_{\alpha},$ but not $PKC_{\varepsilon},$ and RhoA were translocated from the cytosol to the cell membrane by stretch. Phosphorylation of the myosin light chains was increased by stretch and the increased phosphorylation was blocked by treatment of the tissue with H-7 and Y-27632, respectively. Our results are consistent with important roles for PKC and RhoA in the generation of myogenic tone. Furthermore, enhanced phosphorylation of the myosin light chains by activation of $PKC_{\alpha}$ and/or RhoA may be key mechanisms for the $Ca^{2+}$ sensitization associated with myogenic tone in basilar vessels.

DRUG INDUCED GINGIVAL HYPERPLASIA IN TAKAYASU'S ARTERITIS : DENTAL CONSIDERATION (Takayasu's Arteritis 환자에서 약에 의해 유발된 치은 비대)

  • Kim, Soo-Hyun;Choi, Ami;Song, Je-Seon;Kim, Seong-Oh;Choi, Byung-Jai;Lee, Hyo-Seol
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.9 no.1
    • /
    • pp.36-38
    • /
    • 2013
  • Takayasu's arteritis(TA) is commonly known as Aortitis Syndrome, Pulseless disease. Cardiac involvement due to vascular occlusion or stenosis is common in TA, expressed in forms of heart failure, aorta hypertension, alteration of artery or cardiac muscle. In this case, a 9 year old boy was referred to our dental clinic by his cardiology doctor for delayed eruption and gingival hyperplasia on upper incisor. The patient was diagnosed as TA with history of taking Amlodipine, a calcium channel blocker as hypertension medication. He was diagnosed as drug induced gingival hyperplasia. Under taking preventive antibiotic, gingivectomy was done. In case dental treatment of TA patient, dentist should be aware of two possible problems. First is the antibiotic prophylaxis due to the high risk of endocarditis. Second is the possibility of drug induced gingival hyperplasia.

Effects of Lead Acetate on the Uptake of [$^3$H]-serotonin by the Synaptosomes Separated from the Cerebrum and Brain Stem of the Rat (초산납이 흰쥐 synaptosome의 [$^3$H]-serotonin의 흡수에 미치는 영향)

  • 이규석;박순철
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2000
  • This study was carried out to investigate the physiological changes induced acutely with the low doses of lead acetate in the synaptosomes from the cerebrum and brain stem of the rat. The general uptake patterns of [$^3$H]-serotonin were observed in synaptosomes, as a model of presynaptic nerve terminal, from the cerebrum and brain stem. And the effects of the low doses of lead acetate on the uptake process were investigated id vitro and in vivo. The Km value of the uptake of the [$^3$H]-serotonin by the synaptosomes was 0.5 $\mu$M in the cerebrum and 0.1 $\mu$M in the brain stem. These low values reveal that the synaptosomes from the cerebrum and the brain stem have a high affinity to [$^3$H]-serotonin, especially in brain stem. The uptake of $\mu$M-serotonin was dependant on the sodium and potassium ions. When being treated with ouabain, the $Na^+$ $-K^+$ ATPase inhibitor, the uptake of [$^3$H]-serotonin was reduced. This supports strongly that the uptake of [$^3$H]-serotonin was sensitive to the changes of the concentrations of the sodium and potassium ions. When the calcium channel blocker, verapamil, was treated, the uptake of [$^3$H]-serotonin was changed only in synaptosomes from the brain stem. The uptake of [$^3$H]-serotonin was reduced by the lead treatment in the synaptosomes from the cerebrum and brain stem in vitro and in vivo. [lead acetate, synaptosomes, $^3$H-serotonin, rat]

  • PDF

General Pharmacological Study of CJ-11828, an Amlodipine adipate

  • Choi, Jae-Mook;Lee, Sung-Hak;Kim, Il-Hwan;Park, Jie-Eun;Park, Choong-Sil;Youn, Yong-Sik;Lim, Dong-Kwon;Cho, Sung-Hwan;Chang, Jun-Hwan;Do, Sun-Hee;Kim, Eun-Joo;Kim, Young-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.114-121
    • /
    • 2004
  • This study was undertaken to evaluate the general pharmacological properties of CJ-11828, an amlodipine adipate, in experimental animals and in vitro system. CJ-11828 had no effects on general behavior, motor coordination, writhing syndromes, pentetrazol-induced chemoshock and electric shock in mice at dose levels of 3,10, anti 30 mg/kg, po. But there were decrease of body temperature, prolongation of sleeping time, and inhibition of intestinal activity in mice treated with CJ-11828 at doses of 10 and 30 mg/kg, po. CJ-11828 decreased the blood pressure in coscuous fog at the dose level of 2mg/kg, po, but it was expected as a result of pharmacological activity of CJ-11828. Any effect on respiratory system was not observed in conscious rat at doses of 3,10, and 30 mg/kg, po. The slight decrease in spontaneous motor activity was observed in mice treated with CJ-11828 at high dose, 30 mg/kg. In vitro experiments, CJ-11828 had no effect on agonists-induced contraction of isolated guinea pig ileum at 0.1, 1, and 10 ${\mu}$M. Based on these results, it was concluded that CJ-11828 had no pharmacological effect ill these studies even up to the 36-fold anticipated clinical dose, 3 mg/kg.