• Title/Summary/Keyword: calcein

Search Result 65, Processing Time 0.025 seconds

EVALUATION OF THE INTERFACES BETWEEN IMPLANTS AND REGENERATED BONE USING BONE MORPHOGENETIC PROTEIN AND DEMINERALIZED FREEZE-DRIED BONE (임플란트 매식시 골형성단백질 및 탈회동종골 사용에 따른 골재생 및 계면에 대한 연구)

  • Kang, Sang-Gyu;Lee, Jong-Ho;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.1
    • /
    • pp.24-39
    • /
    • 2000
  • Various methods and graft materials have been used to fill in the defect adjacent to the implants and considered as clinically acceptable. But it is not clear whether the regenerated bone increases the implant-bone contact and supports the implant. The purpose of this study is to evaluate regenerated bone surrounding implants using bone morphogenetic protein(BMP) and demineralized freeze-dried bone(DFDB), and the interfaces between implants and regenerated bone. bBMP was extracted and partially purified from the bovine bone matrix using heparine chromatography. Demineralized freeze-dried bone was made from the dog. Inactive insoluble collagenous bone matrix(IBM) of dog was used as carrier of bBMP. Interfaces of titanium coated epoxy resin implants were processed for demineralized section for transmission electron microscopy(TEM) and those of screw type implants were for nondemineralized section for light and fluoromicroscopic examination. Implants were inserted in the inferior border of mandible of adult dogs and artificial bony defects($3{\times}3{\times}4mm$) were made at the mesial and distal side of implants. Defects were filled with BMP(BMP group) and DFDB(DFDB group). For the fluoromicroscopic examination, the fluorescent dyes(oxytetracycline, calcein green, alizarin red) were injected 2, 4, 6, 8, 12 weeks after implantation. The experimental animals were sacrificed at the 6th and the 12th week and their mandible were extirpated and processed for examination with light microscopy, fluoromicroscopy and TEM. The obtained results were as follows : 1. By the light microscopic findings, the defects were filled with woven bone at the 6th week and compact bone at the 12th week, and the osseointegrations were seen in both groups. There was no histological difference between them. 2. On the basis of the histomorphometric analysis, BMP group(6th week: 40.25%, 12th week: 56.04%) had higher bony contact ratio than DFDB group(38.37%, 42.63%). There was significant difference between two groups at the 12th week(p<0.05). 3. The amount of bone formation in BMP group was more prominent than in DFDB group. Significant difference was noted among two groups at the 6th and the 8th week(p<0.05). 4. By the transmission electron microscopic findings, $0.4-2{\mu}m$ soft tissue layer was found in adjacent to the interfaces and over the collagen fibrils of bone at the 6th week. However, about 100nm amorphous layer was noted at the interface or collagen fibrils directly extended to the titanium surface at the 12th week. There was no significant difference between two groups. 5. These results suggest that BMP and DFDB can be used as good graft materials in the regeneration of bone adjacent to implant, and BMP is more valuable as a bone inducer than DFDB.

  • PDF

The effect of the Ca-P coated DBBP on osseous regeneration in the rat calvarial bone defect (백서 두개골 결손부에서 Ca-P 피복된 이종골의 골재생 효과)

  • Sung, Sun-Ju;Chung, Hyun-Ju;Park, Hong-Ju;Kim, Ok-Su;Kim, Young-Jun
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.475-487
    • /
    • 2004
  • Purpose: This study was aimed to evaluate the effect of the deproteinated bovine bone powder (DBBP) coated with calcium phosphate (Ca-P) on osseous regeneration in the calvarial bone defect of rat. Materials and Methods : The DBBP (Control group, n=6) and the Ca-P coated DBBP (Experimental group, n=6) were grafted in the critical sized calvarial bone defect (8 mm) of rat weighing 250 g. The animals were sacrificed at 1, 4 week. The biopsy specimens were decalcified with 5%formaldehyde and embedded in paraffin. The rats were sacrificed at 8 week received tetracycline (1 week), calcein blue (4 week), and alizarin red (7 week), and the biopsy specimens were taken. The specimens were embedded in methylmethacrylate and ground to 10 ${\mu}m$ thin sections were made. All of the specimens were stained with H & E and Masson's trichrome and examined under light microscope. The specimens at 8 week were examined under fluorescent microscope. Results : In the Control group, the grafted DBBP was surrounded with connective tissue, and osteoblasts were observed partially around the grafted particles at 1 week. At 4 week, some osteoid was observed and, new bone formation was observed at the periphery of grafted materials at 8 week, In the Experimental group, some osteoid was seen at the periphery of the grafted Ca-P coated DBBP at 1 week, and osteoblast and newly formed bone were observed around the grafted materials. At 8 week, newly formed bone was observed at the periphery of the grafted materials. Conclusion: These results suggest that Ca-P coated DBBP group was more and faster than DBBP group in new bone formation and Ca-P could contribute to enhance bone formation in the critical sized calvarial bone defect of rat.

Effects of ibuprofen-loaded TiO2 nanotube dental implants in alloxan-induced diabetic rabbits

  • Kim, Young-Gyo;Kim, Wan-Tae;Jung, Bo Hyun;Yoo, Ki-Yeon;Um, Heung-Sik;Chang, Beom-Seok;Lee, Jae-Kwan;Choi, Won-Youl
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.352-363
    • /
    • 2021
  • Purpose: Some systemic conditions, especially diabetes mellitus (DM), adversely affect dental implant success. This study aimed to investigate the effects of ibuprofen-loaded TiO2 nanotube (ILTN) dental implants in alloxan-induced diabetic rabbits. Methods: Twenty-six New Zealand white rabbits were treated with alloxan monohydrate to induce DM. At 2 weeks following DM induction, 3 types of implants (sandblasted, large-grit, and acid-etched [SLA], ILTN, and machined) were placed into the proximal tibia in the 10 rabbits that survived following DM induction. Each type of implant was fitted randomly in 1 of the holes (round-robin method). The animals were administered alizarin (at 3 weeks) and calcein (at 6 weeks) as fluorescent bone markers, and were sacrificed at 8 weeks for radiographic and histomorphometric analyses. Results: TiO2 nanotube arrays of ~70 nm in diameter and ~17 ㎛ in thickness were obtained, and ibuprofen was loaded into the TiO2 nanotube arrays. A total of 26 rabbits were treated with alloxan monohydrate and only 10 rabbits survived. The 10 surviving rabbits showed a blood glucose level of 300 mg/dL or higher, and the implants were placed in these diabetic rabbits. The implant stability quotient (ISQ) and bone-to-implant contact (BIC) values were significantly higher in the ILTN group (ISQ: 61.8, BIC: 41.3%) and SLA group (ISQ: 62.6, BIC: 46.3%) than in the machined group (ISQ: 53.4, BIC: 20.2%), but the difference in the BIC percentage between the SLA and ILTN groups was not statistically significant (P=0.628). However, the bone area percentage was significantly higher in the ILTN group (78.0%) than in the SLA group (52.1%; P=0.000). Conclusions: The: ILTN dental implants showed better stability (ISQ) and BIC than the machined implants; however, these values were similar to the commercially used SLA implants in the 2-week diabetic rabbit model.

INFLUENCE OF TOPICAL IRRIGATION USING THE HA & PURE Ti IMPLANTS ON BONE FORMATION;A STUDY ON THE IRRADIATED RABBIT TIBIA (방사선 조사후 매식한 임프란트와 관주에 따른 골치유에 대한 비교연구)

  • Hong, Sung-Pal;Rhee, Gun-Joo;Cha, Yong-Doo;Oh, Se-Jong;Hyun, Jung-Min;Choi, Dong-Joo;Park, Young-Joo;Park, Jon-Woo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.1
    • /
    • pp.59-72
    • /
    • 2000
  • In this study, the rate of bone formation and the pattern of bone to implant contact surface around HA coated implant and pure Ti implant inserted into the irradiated tibia of rabbit were compared. Sixteen mongrel mature male rabbits were used as experimental animal. Each rabbit received 15 Gy of irradiation. Four weeks after irradiation, two holes were prepared on the tibia of each rabbit for placement of HA coated type and pure Ti type implants. Prior to implant placement, one group received steroid irrigation and the control group was similarly irrigated with normal saline. This was immediately followed by placement of the two different types of implants. Postoperatively, tetracycline was injected intramuscularly for 3 days. For fluorescent labelling, 3 days of intramuscular alizarine red injection was given. 2 weeks before sacrifice, followed by intramuscular calcein green on the last 3 days before specimen collection. Each rabbit was sacrificed on the second, fourth, sixth and eighth week after the implantation. The specimens were observed by the light microscope and the fluorescent microscope. The results were as follows; 1. All implants inserted into the irradiated tibia of rabbit were free from clinical mobility and no signs of bony resorption were noted around the site of implant placement. 2. Under the light microscope, new bone formation proceeded faster around implants that received steroid irrigation compared to the control group irrigated with saline. Bone to implant contact surface was greater in the steroid irrigated group than the saline irrigated group. Therefore, better initial stabilization was observed in the group pretreated with steroid irrigation. 3. Under the light microscope. HA coated implants showed broader bone to implant contact surface than pure Ti implants, and HA coated implants had better bone healing pattern than pure Ti implants. 4. In the steroid pretreated group, acceleration of bone formation was demonstrated by fluorescent microscopy around the 2, 4 weeks group and the 6 weeks HA coated implant group. The difference in the rate of bone formation proved to be statistically significant(P<0.05). Faster bone formation was noted in the saline irrigated group in the 6 weeks pure Ti implants and 8 weeks group. The difference was not statistically significant(P<0.05). 5. For the rabbits that were sacrificed on the second and fourth week after the implant placements, the rates of bone formation around HA coated implants proceeded faster than those around pure Ti implants under the fluorescent microscopy. For the rabbits that were sacrificed on the sixth week after the implant placements, the rates of bone formation around pure Ti implants proceeded faster than those around HA coated implants under the fluorescent microscopy. But this result did not show statistical significance (P<0.05) For the rabbits that were sacrificed on the eighth week after the implant placements, the rates of bone formation around HA coated implants proceeded faster than those around pure Ti implants under the fluorescent microscopy. This result was statistically significant (P<0.05).

  • PDF

The influence of magnet on tissue healing after immediate implantation in fresh extraction sites in dogs (성견에서 발치 후 즉시 식립 임플란트에 설치한 자석이 주위 조직에 미치는 영향)

  • Yu, Seok-Min;Cho, In-Ho;Shin, Soo-Yeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.435-444
    • /
    • 2009
  • Statement of problem: The clinical use of electric and electomagnetic fields for fracture healing applications began in the early 1970s. Since then, several technologies have been developed and shown to promote healing of fractures. Developments of these devices have been aided in recent years by basic research and several well controlled clinical trials not only in the medical field but in dentistry. Purpose: The purpose of this study was to compare alveolar bone reduction following immediate implantation using implants onto which magnets were attached in fresh extracted sockets. Material and methods: Four mongrel dogs were involved. Full buccal and lingual mucoperiosteal flaps were elevated and third and fourth premolars of the mandible were removed. Implants with magnets and implants without magnets were installed in the fresh extracted sockets and after 3 months of healing the animals were sacrificed. The mandibles were dissected and each implant sites were sampled and processed for histological examination. Results: The marginal gaps that were present between the implant and walls of the sockets at the implantation stage disappeared in both groups as a result of bone fill and resorption of the bone crest. The buccal bone crests were located apical of its lingual counterparts. At the 12 week interval the mean of marginal bone resorption in the control group was significantly higher than that of the magnet group. The majority of specimens in magnet group presented early bone formation and less resorption of the buccal marginal bone compared to the control group. Conclusion: Within the limitations of this study, it could be concluded that implants with magnets attached in the early stages of implantation may provide more favorable conditions for early bone formation and reduce resorption and remodeling of marginal bone.