• Title/Summary/Keyword: cable-stayed

Search Result 616, Processing Time 0.023 seconds

Flutter analysis of Stonecutters Bridge

  • Hui, Michael C.H.;Ding, Q.S.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.125-146
    • /
    • 2006
  • Stonecutters Bridge of Hong Kong is a cable-stayed bridge with two single-column pylons each 298 m high and an aerodynamic twin deck. The total length of the bridge is 1596 m with a main span of 1018 m. The top 118 m of the tower will comprise structural steel and concrete composite while the bottom part will be of reinforced concrete. The bridge deck at the central span will be of steel whilst the side spans will be of concrete. Stonecutters Bridge has adopted a twin-girder deck design with a wide clear separation of 14.3 m between the two longitudinal girders. Although a number of studies have been conducted to investigate the aerodynamic performance of twin-girder deck, the actual real life application of this type of deck is extremely limited. This therefore triggered the need for conducting the present studies, the main objective of which is to investigate the performance of Stonecutters Bridge against flutter at its in-service stage as well as during construction. Based on the flutter derivatives obtained from the 1:80 scale rigid section model experiment, flutter analysis was carried out using 3-D finite element based single parameter searching method developed by the second author of this paper. A total of 6 finite element models of the bridge covering the in-service stage as well as 5 construction stages were established. The dynamic characteristics of the bridge associated with these stages were computed and applied in the analyses. Apart from the critical wind speeds for the onset of flutter, the dominant modes of vibration participating in the flutter vibration were also identified. The results indicate that the bridge will be stable against flutter at its in-service stage as well as during construction at wind speeds much higher than the verification wind speed of 95 m/s (1-minute mean).

Dynamic analysis of long-span cable-stayed bridges under wind and traffic using aerodynamic coefficients considering aerodynamic interference

  • Han, Wanshui;Liu, Huanju;Wu, Jun;Yuan, Yangguang;Chen, Airong
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.405-430
    • /
    • 2017
  • The aerodynamic characteristics of vehicles are critical to assess vehicle safety and passenger comfort for vehicles running on long span bridges in a windy environment. However, in previous wind-vehicle-bridge (WVB) system analysis, the aerodynamic interference between the vehicle and the bridge was seldom considered, which will result in changing aerodynamic coefficients. In this study, the aerodynamic coefficients of a high-sided truck on the ground (ground case) and a typical bridge deck (bridge deck case) are determined in a wind tunnel. The effects of existent structures including the bridge deck and bridge accessories on the high-sided vehicle's aerodynamic characteristics are investigated. A three-dimensional analytical framework of a fully coupled WVB system is then established based on the finite element method. By inputting the aerodynamic coefficients of both cases into the WVB system separately, the vehicle safety and passenger comfort are assessed, and the critical accidental wind speed for the truck on the bridge in a windy environment is derived. The differences in the bridge response between the windward case and the leeward case are also compared. The results show that the bridge deck and the accessories play a positive role in ensuring vehicle safety and improving passenger comfort, and the influence of aerodynamic interference on the response of the bridge is weak.

2-Dimensional Section Model Experimental Study of 1200m Span Cable-Stayed Bridge (주경간 1200m급 사장교 2차원 단면모형실험)

  • Lee, Ho-Yeop;Chun, Nak-Hyun;Oh, Seung-Taek;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.76-76
    • /
    • 2011
  • 현재까지 시공된 사장교 중, 주경간이 가장 긴 교량은 중국의 수통대교(1088m)이다. 이에 버금가는 사장교로 홍콩의 스톤커터교(1018m) 역시 주경간장이 1000m가 넘는다. 바야흐로 사장교 역시 주경간 1000m의 시대가 열린 것이다. 우리나라 역시 세계적 흐름에 맞추어 주경간 800m의 인천대교(세계 5위)를 시공한바 있다. 이와 같이 교량의 초장대화는, 교량 건설 분야에서 기술경쟁력의 지표가 될 뿐만 아니라 세계 건설 시장의 큰 흐름이라고 할 수 있다. 이에 본 연구는 세계적 추세에 발맞추어, 국내 각계의 건설 전문가들이 모여 만든 초장대 교량 사업단의 기술 혁신 사업의 일환으로 이루어졌다. 교량이 장대화 되면서 바람의 의한 영향이 중요해진다는 것은 주지의 사실이다. 특히 사장교와 현수교 같은 특수 교량의 경우, 정적 및 동적 내풍 성능이 반드시 고려되어야만 한다. 본 연구에서는 주경간 1200m의 사장교를 가정하고, 이 사장교의 내풍 단면을 개발, 그 단면에 대한 정적 및 동적 내풍 성능을 평가하고자 하였다. 정적 내풍 성능으로는 단면의 형상에 따른 풍하중을 파악하고자 했으며, 동적 내풍 성능으로는 풍속에 따른 교량의 연직방향 변위 및 플러터 속도를 파악하고자 하였다. 이 실험은 추후에 3차원 전교모형실험의 기본 데이터로 활용하였다. 본 실험을 통해 개발된 단면의 등류 및 난류 상태에서의 영각별 정적 공기력계수를 계산해내었고, 설계풍속이 54.7m/s일때 한계풍속 65.64m/s(거마대교 기준)하에서의 중앙 경간의 풍속별 평균 변위를 측정하였으며, 이를 토대로 이 교량의 영각별 플러터 속도를 계산해 내었다.

  • PDF

Proposal and Design Application of High-Rise Structural System for Combining Autonomous Vehicles and Architecture (자율주행차량과 건축의 결합을 위한 고층 구조 시스템 제안 및 설계 적용)

  • Park, Sang-Woo;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • The purpose of this study is to propose future-oriented high-rise buildings where the vehicle is parked at the top of the building. At the same time, the vehicle is used as a part of the building along with the advent of the era of autonomous driving. The suspended structure is proposed as a suitable structural system for architectural planning. This system is free to design because there are no limitations on column planning compared to conventional designs. In particular, the low-floor plan can be used as an open space because colums are not arranged in the lower-floors. Thereby opened low-floor plan has advantages that visual perception of the space is improved, noise problems along the side of the street is solved and planning underground parking spaces are easier. These advantages can solve the problem of overlapping columns with vehicle traffic in the building. However, there are some problems that the suspension structure is mainly a formal form and the usable area is small compared to the core area because it is a core-oriented structural system. In this regard, a new structural system was proposed by combining the concept of suspended structure and cable stayed column. Therefore, this paper analyzes the existing style of high-rise housing suspended Structure and proposes a new structural system and the concept of design for autonomous vehicles.

Responses of self-anchored suspension bridge to sudden breakage of hangers

  • Qiu, Wenliang;Jiang, Meng;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.241-255
    • /
    • 2014
  • The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of a concrete self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger has significant effects on tensions of the hangers next to the broken hanger, bending and torsion moments of the girder, moments of the towers and reaction forces of the bearings. The results obtained from dynamic analysis method are very different from those obtained from static analysis method. The maximum tension of hanger produced by breakage of a hanger exceeds 2.2 times of its initial value, the maximum dynamic amplification factor reaches 2.54, which is larger than the value of 2.0 recommended for cable-stayed bridge in PTI codes. If two adjacent hangers on the same side of bridge break one after another, the maximum tension of other hangers exceeds 3.0 times of its initial value. If the safety factor adopted to design hanger is too small, or the hangers have been exposed to corrosion, the bridge may collapse due to breakage of two adjacent hangers.

Smart Passive System Based on MR Damper (MR댐퍼 기반의 스마트 수동제어 시스템)

  • Cho, Sang-Won;Jo, Ji-Seong;Kim, Chun-Ho;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.51-59
    • /
    • 2005
  • Magnetorheological(MR) dampers are one of the most promising semi active control devices, because they have advantages such as small power requirement, reliability, and low price to manufacture. To reduce the responses of structures with MR dampers, a control system including power supply, controller, and sensors is required. However, when a mount of MR dampers are used to a large?scale civil structure such as cable stayed bridges, the control system becomes complex. Therefore, it is not easy to install and maintain the MR damper based control system. To resolve above difficulties, This paper proposes a smart passive system that consists of a MR damper and an electromagnetic induction(EMI) system. According to the Faraday’s law of induction, EMI system that is attached to the MR damper produces electric energy. The produced energy is supplied to the MR damper. Thus, the MR damper with EMI system does not require any power at all. Furthermore, the induced electric energy is proportional to external loads like earthquakes, which means the MR damper with EMI system is adaptable to external loads without any controller and corresponding sensors. Therefore, it is easy to build up and maintain the proposed smart passive system.

Wind characteristics at Sutong Bridge site using 8-year field measurement data

  • Xu, Zidong;Wang, Hao;Wu, Teng;Tao, Tianyou;Mao, Jianxiao
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.195-214
    • /
    • 2017
  • Full-scale wind characteristics based on the field measurements is an essential element in structural wind engineering. Statistical analysis of the wind characteristics at Sutong Cable-stayed Bridge (SCB) site is conducted in this study with the recorded long-term wind data from structural health monitoring system (SHMS) between 2008 and 2015. Both the mean and turbulent wind characteristics and power spectra are comprehensively investigated and compared with those in the current codes of practice, such as the measured wind rose diagram, monthly maximum mean wind speed, turbulence intensity, integral length scale. Measurement results based on the monitoring data show that winds surrounding the SCB site are substantially influenced by the southeast monsoon in summer and strong northern wind in winter. The measured turbulence intensity is slightly higher than the recommended values in specifications, while the measured ratio of lateral to longitudinal turbulence intensity is slightly lower. An approximately linear relationship between the measured turbulence intensities and gust factors is obtained. The mean value of the turbulence integral length scale is smaller than that of typical typhoon events. In addition, it is found that the Kaimal spectrum is suitable to be adopted as the power spectrum for longitudinal wind component at the SCB site. This contribution would provide important wind characteristic references for the wind performance evaluation of SCB and other civil infrastructures in adjacent regions.

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.

An Analysis of Night and Day Images of Bridges Over the Han River in Seoul (서울시 한강교량 주야간 경관이미지 분석)

  • 서주환;최현상;차정우
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.5
    • /
    • pp.31-38
    • /
    • 2002
  • This study attempts to grasp the correlation between the image of bridges and bridge landscapes with their surroundings during day and nighttime viewing, and to understand the psychological influence of nighttime lighting through quantitative analysis. In addition, it presents a design to construct bridges in order to increase viewers enjoyment of bridge landscapes lit at night. To attain this objective and contrive generalization of the results, this paper selects 8 of 9 bridges with lightings in Seoul and excludes bridges constructed by 2004. The criteria for selection of the viewpoints is that each must be within easy reach of bridges, and must allow viewers to recognize surrounding landscape details both in daylight and at night. As well, the pictures of bridges are taken in the terraced land by the riverside. The study selects 16 pictures, judged to be of similar quality and angle, to establish the conditions of luminosity, color, definition and angle. The results are as follows. First, viewers preferences of night landscapes are higher than day landscapes due to the effect of lighting. By day, viewers preferred bridges with various structures such as cable-stayed bridges and arch bridges more than simple bridges like girder bridges. Viewers also indicated preferences for lightings which feature a unique color and which are harmonized with their surroundings. Second, components representing the images of bridge landscape are classified into three types, 'beauty', 'system' and 'agreeableness'. Third, the factors affecting preference are the shape of bridge by day and lighting at night. Esthetic appeal is the most important factor in visual preference so each bridges own esthetic appeal and surroundings must be considered. Thus, a complete plan must be created which considers safety, beauty and the local surroundings. In addition, when the lighting of a bridge is selected, the design of the bridge landscape must consider various lighting schemes to harmonize the upper and lower parts of the structure. At this point, the study reveals the basic elements of bridge planning in order to increase appreciation of the bridge landscape.

Development of Shape Determination Program for Suspension Bridge Using Digital Image Processing (디지털 화상처리기법을 이용한 현수교의 형상결정기법 개발)

  • Cheung, Jin-Hwan;Kang, Choong-Hyun;Kim, Nam-Shik;Park, Yong-Myoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.117-126
    • /
    • 2008
  • In this paper, it is presented a digital image processing method and the program (Visual C++) to determine the shape of the suspension bridge. To investigate the precision of this method, a suspension bridge is divided into 5, 13 and 19 images, respectively, by using the 6.3M pixels digital camera with 300mm zoom lens. Obtained results of the Kwang-Ahn Grand Bridge by using this method are fairly close to the real precision surveyed data. The accuracy is more improved by increasing the number of divided images of the structure. The total cost, man power and time of field survey by this method presented in this study could be much more reduced and the developed program could be applied with little modification for other structures like cable-stayed bridges, if lens compensation algorithms and program access capabilities are improved.