• Title/Summary/Keyword: cable truss

Search Result 76, Processing Time 0.027 seconds

Effects of Geometric Characteristics on the Ultimate Behavior of Steel Cable-stayed Bridges (기하학적 특성이 강사장교의 극한 거동에 미치는 영향)

  • Kim, Seungjun;Shin, Do Hyoung;Choi, Byung Ho;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.327-336
    • /
    • 2012
  • This study presents the effects of various geometric properties on the ultimate behavior of steel cable-stayed bridges. In general, cable-stayed bridges are well known as a very efficient structural system, because of those geometric characteristics, but at the same time, the structure also shows complex structural behavior including various nonlinearities which significantly affect to the ultimate behavior of the structure. In this study, the effects of various geometric properties of main members on the ultimate behavior under specific live load cases, which had been studied in previous studies, were investigated using a rational analytical method. In this parametric study, sectional dimensions of main members were considered as main geometric parameters. For the rational ultimate analysis under specific live load cases, the 2-step analysis method, which contains initial shape analysis and live load analysis, was used. As the analysis model, 920.0 m long steel cable-stayed bridges were used and two different types of cable arrangement were considered to study the effect of the cable arrangement types. Through this study, the effects of various geometric properties on the characteristics of the ultimate behavior of steel cable-stayed bridges were intensively investigated.

Development of Geometrically Nonlinear Finite Element Analysis Examples for Computational Structural Analysis (전산구조해석을 위한 기하학적 비선형 유한요소해석 예제 개발)

  • Na, Won-Bae;Lee, Sun-Min
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.5
    • /
    • pp.699-711
    • /
    • 2012
  • An undergraduate course named computational structural analysis becomes more significant in recent years because of its important role in industries and the recent innovation in computer technology. Typically, the course consists of introduction to finite element method, utilization of general purpose finite element software, and examples focusing on static and linear analyses on various structural members such as a beam, truss, frame, arch, and cable. However, in addition to the static and linear analyses, current industries ask graduates to acquire basic knowledge on structural dynamics and nonlinear analysis, which are not listed in the conventional syllabus of the computational structural analysis. Therefore, this study develops geometrically nonlinear examples, which can help students to easily capture the fundamental nonlinear theory, software manipulation, and problem solving skills. For the purpose, five different examples are found, developed for the analyses of cables and cable nets, which naturally have strong geometrical non-linearity. In the paper, these examples are presented, discussed, and finally compared for a better subject development.

Stability Analysis of Steel Cable-stayed Bridges under Construction Stage (폐합 전 강사장교의 안정성 해석)

  • Kim, Seung-Jun;Shim, Kyung-Suk;Won, Deok-Hee;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.99-111
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges in the construction stage, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the P-${\Delta}$ effects of the girder and mast, and the large displacement effect. Initial shape analysis and construction-stage analysis were performed to determine the equilibrium of the structure in the construction stage. After that, geometric nonlinear analysis was performed to study structural stability. In this study, the weight of the derrick crane and the key segment were considered the main external loads, which were applied to the tip of the center span. The cable arrangement type and the stiffness ratios of the girder and mast were considered the main parameters of the analytic research. Based on the results of the analysis, the change in the buckling mode and critical load factors with respect to the cable arrangement type and the stiffness ratios of the girder and mast was investigated. The buckling modes of the steel cable-stayed bridges in the construction stage were classified, and the ranges of the stiffness ratios of the girder and mast, which show these classified buckling modes, were suggested.

Optimum Design of the Spatial Structures using the TABU Algorithm (TABU 알고리즘을 이용한 대공간 구조물의 최적설계)

  • Cho Yong-Won;Lee Sang-Ju;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.273-280
    • /
    • 2005
  • The design of structural engineering optimization is to minimize the cost. This problem has many objective functions formulating section and shape as a function of the included discrete variables. simulated annealing, genetic algerian and TABU algerian are searching methods for optimum values. The object of this reserch Is comparing the result of TABU algorithm, and verifying the efficiency of TABU algorithm in structural optimization design field. For the purpose, this study used a solid truss of 25 elements having 10 nodes, and size optimization for each constraint and load condition of Geodesic ome, and shape optimization of Cable Dome for verifying spatial structures by the application of TABU algorithm.

  • PDF

Bridge Health Monitoring with Consideration of Environmental Effects

  • Kim, Yuhee;Kim, Hyunsoo;Shin, Soobong;Park, Jong-Chil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.648-660
    • /
    • 2012
  • Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposes a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable-stayed bridge.

막.케이블.트러스구조의 범용해석프로그램;McS

  • 김승덕
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.29-36
    • /
    • 1992
  • 우리의 경제발전과 함께, 막구조 및 케이블구조를 이용한 특수 대공간 구조물이 더욱 더 늘어날 전망이며, 이들 구조물의 구조해석은 일반적인 범용ㅇ 구조해석 프로그램으로는 해석이 불가능하다. 즉, 대부분의 범용 구조해석 프로그램이 초기강성을 가진 구조물을 해석할 수 있는데 반해, 막구조 및 케이블 구조는 초기강성이 매우 약한 구조체이므로, 초기 불안정현상을 나타내고, 따라서 해석이 불가능하게 된다. 이러한 구조적 특징을 가진 막구조 및 케이블구조를 해석하기 위하여, 막 케이블 및 트러스요소로 구성된 복합구조체를 해석할 수 있는 범용 구조해석 프로그램인 McS(Membrane and Cable/Truss Structures)가 개발되었으며, 그 Flow-chart는 표1에서와 같다. McS는 현재, 한국에서는 성균관대학교 자연과학캠퍼스의 VAX-11, 1명진단조공업주식회사의 SUN 워크스테이션에서 작동중이며, 일본에서는 동경대학 생산기술연구소의 M-380 및 T.I.S. & Partners의 IBM 워크스테이션에서 작동중에 있다.

  • PDF

Optimum Design of the Spatial Structures using the TABU Algorithm (TABU 알고리즘을 이용한 대공간 구조물의 최적설계)

  • Cho, Yong-Won;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.246-253
    • /
    • 2005
  • The design of structural engineering optimization is to minimize the cost. This problem has many objective functions formulating section and shape as a function of the included discrete variables. simulated annealing, genetic algerian and TABU algorithm are searching methods for optimum values. The object of this reserch is comparing the result of TABU algorithm, and verifying the efficiency of TABU algorithm in structural optimization design field. For the purpose, this study used a solid truss of 25 elements having 10 nodes, and size optimization for each constraint and load condition of Geodesic one, and shape optimization of Cable Dome for verifying spatial structures by the application of TABU algorithm

  • PDF

Analysis of Stabilizing Process for the Unstable Truss Structures using a Topology of Member Connection (구성부재의 위상을 이용한 불안정 트러스 구조물의 안정화 이행과정)

  • 권택진;김진우;김재열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.251-258
    • /
    • 2001
  • Cable and membrane structures can be classified as a unstable structure in the view point of shape determination process. An unstable stucture at the initial state generally cannot take a role as the resistance for the external force. Therefore, there should be a stabilizing process to get the stable state of a structure and it is necessary to visualize the shape finding from unstable state to stable state. In this paper, a numerical method of stabilizing procedure for the link structures is presented. The structures are assumed to have rigid movements and thus only changing of the topology of member is considered during the analysis. The generalized inverse matrix and the principle of minimum potential energy are used in the process. Illustrative examples are presented and the results show good convergence.

  • PDF

Analysis of cable structures through energy minimization

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.749-758
    • /
    • 2017
  • In structural mechanics, traditional analyses methods usually employ matrix operations for obtaining displacement and internal forces of the structure under the external effects, such as distributed loads, earthquake or wind excitations, and temperature changing inter alia. These matrices are derived from the well-known principle of mechanics called minimum potential energy. According to this principle, a system can be in the equilibrium state only in case when the total potential energy of system is minimum. A close examination of the expression of the well-known equilibrium condition for linear problems, $P=K{\Delta}$, where P is the load vector, K is the stiffness matrix and ${\Delta}$ is the displacement vector, it is seen that, basically this principle searches the displacement set (or deformed shape) for a system that minimizes the total potential energy of it. Instead of using mathematical operations used in the conventional methods, with a different formulation, meta-heuristic algorithms can also be used for solving this minimization problem by defining total potential energy as objective function and displacements as design variables. Based on this idea the technique called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) is proposed. The method has been successfully applied for linear and non-linear analyses of trusses and truss-like structures, and the results have shown that the approach is much more successful than conventional methods, especially for analyses of non-linear systems. In this study, the application of TPO/MA, with Harmony Search as the selected meta-heuristic algorithm, to cables net system is presented. The results have shown that the method is robust, powerful and accurate.

Vertical Seismic Vibration of Suspension Bridges (지진을 받는 현수교의 수직진동)

  • Choi, Jee-Hoon;Lee, Jon-Ja;Kim, Su-Bo;Lee, Yong-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.581-593
    • /
    • 2000
  • In this study, vertical dynamic analyses on the suspension bridges under seismic load are developed. Time domain analysis, random vibration analysis, and spectral analysis are formulated theoretically. The random nitration analysis is checked by numerical integration and the mathematical integration with correlation coefficient which include CQC and SRSS method in the conditions of white noise and filtered white noise. Beam, truss and frame elements are used in order to model the suspension bridge. Geometric stiffness due to dead load is considered for cable and tower.

  • PDF