• Title/Summary/Keyword: cable tension

Search Result 306, Processing Time 0.034 seconds

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

체공형 부양선(Aerostat) 개념설계

  • Lee, Yung-Gyo;Kim, Dong-Min;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Conceptual design of an Aerostat was completed. Configuration was determined based on wind tunnel test results of aeostat hulls to have longitudinal static stability. Hull surface area and volume were obtained by using of Cubic spline method for given configuration and length. Final length of a hull was determined by iteration process. Cable tension and payload were estimated for conceptual design. A parametric study was performed for various weight and misson altitude. As results, a 30m class aerostat was designed and described.

  • PDF

Dynamic Modeling and Analysis of a High Mobility Tracked Vehicle (고속 궤도차량의 동역학적 모델링 및 해석)

  • Lee, Byung-Hoon;Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1486-1493
    • /
    • 2006
  • This paper presents a dynamic model of a high mobility tracked vehicle composed of rigid bodies. Track is modeled as an extensible cable and the track tension between the sprocket and roller is calculated by the catenary equation. The ground force acting on a road wheel is calculated by the Bekker's pressure-sinkage relationship using the segmented wheel model. System equations of motion and constraint acceleration equations are derived in the joint coordinate space using the velocity transformation method.

A Study on the Analysis of Multi-let Spread Mooring Systems (다점지지 계류시스템의 정적해석에 대한 연구)

  • Sin, Hyeon-Gyeong;Kim, Deok-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 1995
  • A multi-leg spread mooring system for floating offshore structures is important, but the multi-leg static analysis is complicated due to the nonlinear behavior of each line and the effect of current which affects each line differently. The pretensioned position of the multi-leg mooring system obtained from the static equilibrium condition changes into a different position due to external loads and current. In this paper, the new position and the static tension at each line are caculated. The relation between the initial static equilibrium position and the new position due to the external loads is expressed in terms of the Taylor's series expansion. The Runge-Kutta $4^{th}$ method is employed in analyzing the 3-dimensional static cable nonlinear equations.

  • PDF

Feasibility of Using the Clamp Meter in Measuring X-Ray Tube Current

  • Kim, Sung-Chul
    • International Journal of Contents
    • /
    • v.9 no.1
    • /
    • pp.38-41
    • /
    • 2013
  • The clamp meter maintains electric safety as a non-invasive method while measuring the absolute value of tube current with it has been recently developed for an X-ray high-tension cable. Especially this can show high accuracy at short X-ray exposure time. Considering such a condition, this study is to evaluate the feasibility of a clamp meter in measuring X-ray tube current by taking the measurements and comparing with those of the Dynalyzer III which has been considered as a standard measuring device. From measuring the tube current accuracy depending on changes in tube voltage and exposure time, the clamp meter showed higher accuracy rate which was -1.3~4.2% difference. Thus clamp meter can be used for clinical radiologists who are not familiar electric circuit to manage X-ray devices easily and correctly in the future.

Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain (Bi-2223/Ag 고온 초전도 선재 변형에 따른 입계전류 특성)

  • 하홍수;오상수;하동우;심기덕;김상철;장현만;권영길;류강식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT(Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It is inevitable to deform the superconducting taps with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

Fuzzy Control of a Sway and Skew of a Spreader by Using Four Auxiliary Cables

  • Lee, Jeong-Woo;Kim, Doo-Hyeong;Park, Kyeong-Taik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1723-1728
    • /
    • 2005
  • This article describes the fuzzy control of the 3-dimensional motion of the container cranes used in dockside container terminals. The container is suspended by four flexible cables via spreader, and due to the disturbances such as the wind and acceleration of cranes, the container undergoes translational(sway) and rotational position errors. And due to the uncertainty of weight and rotational inertia, accurate position control of container crane is difficult to realize. This paper, based on the analysis of 3-dimensional dynamics of container moving systems, describes the design of the fuzzy controller, which does not require the computation time to optimize the distribution of cable tension. The developed controller is shown effective in controlling the container position in the presence of gust and parameter uncertainties.

  • PDF

Dynamic Analysis of Floating Bridge with Discrete Pontoons Subject to Earthquake Load (이산 폰툰형 부유식 교량의 지진응답 해석)

  • 권장섭;백인열;장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.147-154
    • /
    • 2002
  • Dynamic response analysis are conducted for a floating bridge subjected to multiple support earthquake excitation. The floating bridge used in this study is supported by discrete floating pontoons and horizontal pretension cables supported at both ends of the bridge. The bridge is modeled with finite elements and the hydrodynamic added mass and added damping due to the surrounding fluid around pontoons are obtained using boundary elements. Multiple support excitation is introduced at both ends of the bridge and the time history response is compared to that of a simultaneous excitation. The results shows that the differences between two results are not so large except for cable tension for which the multiple support excitation yields larger values. During the analysis the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients.

  • PDF

Behaviour Characteristic of Grid Dome Shaped Space Structures by Post-tensioning (포스트텐션에 의한 격자 돔형 공간 구조의 거동 특성)

  • 김진우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.41-45
    • /
    • 2002
  • This paper is concerned with the erection and ultimate load test of dome shaped space structures by post-tensioning. It is a fast and economical method for constructing such a dome by post-tensioning of the cable in bottom chords. This structure consists of uniform pyramids in a flat layouts on the ground, and then the structure is shaped and erected into its final curved space structure. Ultimate load test was performed for dome shaped space structures. The feasibility of the proposed erection method and the reliability of the established geometric model were confirmed with numerical analysis and experimental investigation on a small scale steel model. As a results we can find the most reasonable modeling technique for the prediction of shape formation in practices and we can know the characteristic of the behaviour in ultimate load test for practical design purposes.

A study of Economical manhole span considering cable pulling tension (케이블 포설장력을 고려한 경제적 맨홀 경간 연구)

  • Lee, Hu-Young;Sun, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.416-417
    • /
    • 2008
  • 맨홀 설치간격과 설치장소선정은 케이블 포설장력과 관계가 깊다. 케이블 포설장력은 맨홀의 설치위치와 경간에 의해 이미 정해지기 때문이다. 맨홀경간이 길어지면 설치개소가 적어져 공사비가 절감이 되기 때문에 경제적인 이점이 있지만 반대로 케이블에는 포설장력이 반비례하게 증가하게 된다. 케이블의 수명을 오래동안 유지하기 위해서는 케이블에 적당한 장력이 걸리게 해야 하고 경제적인 측면에서도 경간을 증가시켜야 되는 상황에 처하게 된다. 설계자는 이에 경제적이고도 안정적인 지중배전선로를 구성하기 위해서는 반드시 케이블 포설장력을 계산하여 설계에 반영하여야 한다. 본고에서는 유형별로 케이블 포설장력을 계산하는 방법을 기술하였고 포설장력 산출결과에 따라 경제적인 맨홀설치 방안을 제시하였다.

  • PDF