• Title/Summary/Keyword: cable tension

Search Result 304, Processing Time 0.021 seconds

Natural frequencies and response amplitude operators of scale model of spar-type floating offshore wind turbine

  • Hong, Sin-Pyo;Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.785-794
    • /
    • 2017
  • This paper is concerned with the comparative numerical and experimental study on the natural behavior and the motion responses of a 1/75 moored scale model of a 2.5 MW spar-type floating offshore wind turbine subject to 1-D regular wave. Heave, pitch and surge motions and the mooring tensions are investigated and compared by numerical and experimental methods. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass and three mooring lines are pre-tensioned by means of linear springs. The numerical simulations are carried out by a coupled FEM-cable dynamics code, while the experiments are performed in a wave tank equipped with the specially-designed vision and data acquisition system. Using the both methods, the natural behavior and the motion responses in RAOs are compared and parametrically investigated to the fairlead position, the spring constant and the location of mass center of platform. It is confirmed, from the comparison, that both methods show a good agreement for all the test cases. And, it is observed that the mooring tension is influenced by all three parameters but the platform motion is dominated by the location of mass center. In addition, from the sensitivity analysis of RAOs, the coupling characteristic of platform motions and the sensitivities to the mooring parameters are investigated.

Model tests on the moored vessel with different moonpool shapes

  • Sajjan, Sharanabasappa C.;Surendran, S.
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.137-147
    • /
    • 2013
  • Moonpools are vertical wells in a floating body used onboard many types of vessels like cable-laying vessels and offshore support vessels. Moonpool gives passage to underwater activities for different types of ships as per their mission requirements. It is observed that inside a moonpool considerable relative motions may occur, depending on shape, depth of the moonpool and on the frequency range of the waves to which the ship is exposed. The vessel responses are entirely different in zero and non-zero Froude number. Former situation is paid attention in this study as the mission requirement of the platform is to be in the particular location for long period of operation. It is well known that there are two modes of responses depending on the shape of the moonpool viz., piston mode for square shape and sloshing mode for rectangular shapes with different aspect ratios of opening like 1:1.5 and 1:2 ratios. Circular shaped moonpool is also tested for measuring the responses. The vessel moored using heavy lines are modeled and tested in the wave basin. The moored lines are provided with pre-tension and the dynamic tensions on the lines are measured. The different modes of oscillations of water column are measured using wave gauge and the vessel response at a particular situation is determined. RAOs determined for various situations provide better insight to the designer. The experiments done in the wave basin may also be compared with a software package meant for handling moored floating bodies.

Analysis of the Transient Dynamic Response of Ocean Mining Pipe System Due to Impulse (임펄스 가진에 의한 근해역 통합채광시험 양광시스템의 파이프 동적 과도응답 해석)

  • Cho, Kyu-Nam;Kim, Min;Park, Yong-Chan;Yoon, Chi-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 2007
  • A finite element analysis scheme is proposed to assess the dynamic response due to impulse excitation of ocean mining pipe system. Transient dynamic response analysis based on the proposed scheme was carried out for various types of impulses, and the magnitude of cable tension induced by impulse was discussed by using a model of 'Segero', a special purpose ship of KT-Submarine as well as ROV carrier 'Onnuri' A qualitative, prospective guideline for the relevant marine operation is obtained.

Numerical and experimental study on dynamic response of moored spar-type scale platform for floating offshore wind turbine

  • Choi, E.Y.;Cho, J.R.;Cho, Y.U.;Jeong, W.B.;Lee, S.B.;Hong, S.P.;Chun, H.H.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.909-922
    • /
    • 2015
  • The dynamic response and the mooring line tension of a 1/75 scale model of spar-type platform for 2.5 MW floating offshore wind turbine subject to one-dimensional regular harmonic wave are investigated numerically and verified by experiment. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass the scale model and three mooring lines are pre-tensioned by means of linear springs. The coupled fluid-rigid body interaction is numerically simulated by a coupled FEM-cable dynamics code, while the experiment is performed in a wave tank with the specially-designed vision and data acquisition system. The time responses of surge, heave and pitch motions of the scale platform and the mooring line tensions are obtained numerically and the frequency domain-converted RAOs are compared with the experiment.

Initial Equilibrium State Analysis of Cable Members for Preliminary Analysis of Multi-span Suspension Bridge under Dead Load (고정하중을 받는 다경간 현수교의 예비해석을 위한 케이블 부재의 초기평형상태 해석)

  • Choi, Dong-Ho;Na, Ho-Sung;Gwon, Sun-Gil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • This paper proposes a method to determine the initial equilibrium state of cable members for preliminary analysis of multi-span suspension bridge under dead load. The proposed method is simpler and more practical than the previous methods used in other studies. The proposed method can be applied to three-span or multi-span suspension bridges. To verify the proposed method, an three-span model as well as four-span models such as New Millenium Bridge in Korea and Yingwuzhou Bridge in China are analyzed. In the verification results, the initial coordinates and tensions of the members calculated by the proposed method are good agreement with those in the previous study for the three-span model and those in the design data of New Millenium Bridge. In addition, the proposed method gives the initial values to keep the initial configuration of Yingwuzhou Bridge.

Static behaviour of lying multi-stud connectors in cable-pylon anchorage zone

  • Lin, Zhaofei;Liu, Yuqing;He, Jun
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1369-1389
    • /
    • 2015
  • In order to investigate the behaviour of lying multi-stud connectors in cable-pylon anchorage zone, twenty-four push-out tests are carried out with different stud numbers and diameters. The effect of concrete block width and tensile force on shear strength is investigated using the developed and verified finite element model. The results show that the shear strength of the lying multi-stud connectors is reduced in comparison with the lying single-stud connector. The reduction increases with the increasing of the number of studs in the vertical direction. The influence of the stud number on the strength reduction of the lying multi-stud connectors is decreased under combined shear and tension loads compared with under pure shear. Yet, due to multi-stud effect, they still can't be ignored. The concrete block width has a non-negligible effect on the shear strength of the lying multi-stud connectors and therefore should be chosen properly when designing push-out specimens. No obvious difference is observed between the strength reductions of the studs with 22 mm and 25 mm diameters. The shear strengths obtained from the tests are compared with those predicted by AASHTO LRFD and Eurocode 4. Eurocode 4 generally gives conservative predictions of the shear strength, while AASHTO LRFD overestimates the shear strength. In addition, the lying multi-stud connectors with the diameters of 22 m and 25 mm both exhibit adequate ductility according to Eurocode 4. An expression of load-slip curve is proposed for the lying multi-stud connectors and shows good agreement with the test results.

Vortex induced vibration and its controlling of long span Cross-Rope Suspension transmission line with tension insulator

  • Tu, Xi;Wu, Ye;Li, Zhengliang;Wang, Zhisong
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.87-102
    • /
    • 2021
  • Long span cross-rope suspension structure is an innovative structural system evolved from typical Cross-Rope Suspension (CRS) guyed tower, a type of supporting system with short span suspension cable supporting overhead power transmission lines. In mountainous areas, the span length of suspension cable was designed to be extended to hundreds or over one thousand meters, which is applicable for crossing deep valleys. Vortex Induced Vibration (VIV) of overhead power transmission lines was considered to be one of the major factors of its fatigue and service life. In this paper, VIV and its controlling by Stockbridge damper for long span CRS was discussed. Firstly, energy balance method and finite element method for assessing VIV of CRS were presented. An approach of establishing FE model of long span CRS structure with dampers was introduced. The effect of Stockbridge damper for overall vibration of CRS was compared in both theoretical and numerical approaches. Results indicated that vibration characteristics of conductor in long span CRS compared with traditional tower-line system. Secondly, analysis on long span CRS including Stockbridge damper showed additional dampers installed were essential for controlling maximum dynamic bending stresses of conductors at both ends. Moreover, factors, including configuration and mass of Stockbridge damper, span length of suspension cable and conductor and number of spans of conductor, were assessed for further discussion on VIV controlling of long span CRS.

Permeability of Magnetic Flux of PS Steel for Variation of Stress and Temperature (긴장재의 응력 및 온도변화에 따른 자속투과율)

  • Park, Jin Su;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.323-331
    • /
    • 2022
  • An experimental study was conducted to investigate the effect of applied tensile force and temperature on the permeability of magnetic flux in prestressing steel. The permeability of magnetic flux is the ratio at which the magnetic flux between two points passes. The prestressing steel used in these experiments included a 7-mm PS wire mainly used for cable-stayed bridges and a 12.7-mm PS strand for prestressed concrete bridges. The experiments to extract the permeability of the magnetic flux of steel wire and strand were conducted under various tensile levels and temperature conditions. From the experimental results, it was observed that the permeability of magnetic flux of the PS tension material was linearly proportional to the applied tensile stress level, and inversely proportional to the temperature. If the experimental relationship among the magnetic permeability, temperature, and prestressing ratio of a PS tension material is known in advance, the current tension stress level on PS members can be evaluated by measuring solely the magnetic permeability and temperature.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

체공형 부양선(Aerostat) 개념설계

  • Lee, Yung-Gyo;Kim, Dong-Min;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • Conceptual design of an Aerostat was completed. Configuration was determined based on wind tunnel test results of aeostat hulls to have longitudinal static stability. Hull surface area and volume were obtained by using of Cubic spline method for given configuration and length. Final length of a hull was determined by iteration process. Cable tension and payload were estimated for conceptual design. A parametric study was performed for various weight and misson altitude. As results, a 30m class aerostat was designed and described.

  • PDF