• Title/Summary/Keyword: cable mechanism

Search Result 131, Processing Time 0.039 seconds

A Research Trend on Film Thickness Dependence of Ac High Feld for Low Density Polyethylene (저밀도 폴리에틸렌을 위한 고전계 파형의 필름 두께의존성에 관한 연구 동향)

  • Jung, Sung-Chan;Rho, Jung-Hyun;Lee, Joo-Hong;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1988-1989
    • /
    • 2007
  • Polyethylene is widely used as the insulator for power cable. To investigate the conduction mechanism for power cable insulation under ac high field, it is very important to acquire the dissipation current under actual running field. Recently, we have developed the unique system, which make possible to observe the nonlinear dissipation current waveform. In this system, to observe the nonlinear properties with high accuracy, capacitive current component is canceled by using inverse capacitive current signal instead of using the bridge circuit for canceling it. We have already reported that the dissipation currents of $40\;{\mu}m$ thick LDPE film at 10 kV/mm and over 140 Hz, it starts to show nonlinearity and odd number's harmonics were getting large. To investigate the conduction mechanis ms in this region, especially space charge effect, various kinds of estimation, such as time variations of instantaneous resistivity for one cycle, FFT spectra of dissipation current waveforms and so on, has been examined. As the results of these estimations, it was found that the dissipation current will depend on not only the instantaneous value of electric field but also the time differential of applied electric field due to taking a balance between applied field and internal field. Furthermore, two large peaks of dissipation current for each half cycle were observed under certain condition. In this paper, to clarify the reason why it shows two peaks for each half cycle, the film thickness dependences of dissipation current waveforms were observed by using the three different thickness LDPE films.

  • PDF

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Mechanism of Windowing of Domestic Free TV Programs (국내 지상파 방송 콘텐츠의 창구화 메커니즘 분석)

  • Lee, Moon-Haeng
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.190-197
    • /
    • 2009
  • Domestic free TVs play roles as for contents provider and TV station : they need to acquire not only ad revenues but also distribution revenues from internet service, cable channel and DMB. It is however doubtful to keep the windowing of programs through the different windows due to recent decrease of ad revenues of the stations. Therefore, the purpose of this study is to search for the mechanism of windowing of free TV's programs and the strategy of the distribution. As a result, the life cycle of the broadcasting programs is so short to be distributed within 7 days, Regarding the windowing, there are at first the strategy increasing the accumulated revenue by the diversification of the windows ; secondly, the strategy focusing on the prospective window neglecting the holdback. It is necessary to choose to take the appropriate strategy by the particularity of each program and the market background.

Prediction of load transfer depth for cost-effective design of ground anchors using FBG sensors embedded tendon and numerical analysis

  • Do, Tan Manh;Kim, Young-Sang
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.737-755
    • /
    • 2016
  • The load transfer depth of a ground anchor is the minimum length required to transfer the initial prestressing to the grout column through the bonded part. A thorough understanding of the mechanism of load transfer as well as accurate prediction of the load transfer depth are essential for designing an anchorage that has an adequate factor of safety and satisfies implicit economic criteria. In the current research, experimental and numerical studies were conducted to investigate the load transfer mechanism of ground anchors based on a series of laboratory and field load tests. Optical FBG sensors embedded in the central king cable of a seven-wire strand were successfully employed to monitor the changes in tensile force and its distribution along the tendons. Moreover, results from laboratory and in-situ pullout tests were compared with those from equivalent case studies simulated using the finite difference method in the FLAC 3D program. All the results obtained from the two proposed methods were remarkably consistent with respect to the load increments. They were similar not only in trend but also in magnitude and showed more consistency at higher pullout loading stages, especially the final loading stage. Furthermore, the estimated load transfer depth demonstrated a pronounced dependency on the surrounding ground condition, being shorter in hard ground conditions and longer in weaker ones. Finally, considering the safety factor and cost-effective design, the required bonded length of a ground anchor was formulated in terms of the load transfer depth.

Transient aerodynamic forces of a vehicle passing through a bridge tower's wake region in crosswind environment

  • Ma, Lin;Zhou, Dajun;Han, Wanshui;Wu, Jun;Liu, Jianxin
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.211-234
    • /
    • 2016
  • Super long-span bridges provide people with great convenience, but they also bring traffic safety problems caused by strong wind owing to their high decks. In this paper, the large eddy simulation together with dynamic mesh technology in computational fluid dynamics (CFD) is used to explore the mechanism of a moving vehicle's transient aerodynamic force in crosswind, the regularity and mechanism of the vehicle's aerodynamic forces when it passes through a bridge tower's wake zone in crosswind. By comparing the calculated results and those from wind tunnel tests, the reliability of the methods used in the paper is verified on a moving vehicle's aerodynamic forces in a bridge tower's wake region. A vehicle's aerodynamic force coefficient decreases sharply when it enters into the wake region, and reaches its minimum on the leeward of the bridge tower where exists a backflow region. When a vehicle moves on the outermost lane on the windward direction and just passes through the backflow region, it will suffer from negative lateral aerodynamic force and yaw moment in the bridge tower's wake zone. And the vehicle's passing ruins the original vortex structure there, resulting in that the lateral wind on the right side of the bridge tower does not change its direction but directly impact on the vehicle's windward. So when the vehicle leaves from the backflow region, it will suffer stronger aerodynamic than that borne by the vehicle when it just enters into the region. Other cases of vehicle moving on different lane and different directions were also discussed thoroughly. The results show that the vehicle's pneumatic safety performance is evidently better than that of a vehicle on the outermost lane on the windward.

Distribution Mechanism of TV Dramas and Its Windows (국내 방송 드라마의 유통 구조 및 창구의 특성)

  • Lee, Moon-Haeng
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.10
    • /
    • pp.104-113
    • /
    • 2008
  • Since 1995, starting period of cable TV in Korea, drama became the most economic genre of TV programs : they are the number one genre of exportation with Korean wave ; the most preferred genre of IP-TV, DMB, etc. This study will show how Korean TV dramas are distributed in the various windows and the characteristics of each windows. Recently, remake of original script, format sale, aggregation and packaging became another distribution methods of TV programs.

안정화 층에 따른 YBCO 박막형 선재의 통전 특성에 관한 연구

  • Du, Ho-Ik;Kim, Min-Ju;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byeong-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.214-214
    • /
    • 2009
  • While critical properties of BSCCO wires rely considerably on grid direction upon BSCCO and have very complicated mechanism of generating a superconducting phase, making it difficult to improve properties of wires, YBCO thin-film wires which can be formed in a superconducting phase upon metal board through vapor deposition processing can get excellent direction and reduce manufacturing costs with more flexibility in improving critical properties; thus, they will be suitable for instrument application in the future. Contrary to BSCCO wires for which thick silver alloy covering materials should inevitably be used, moreover, YBCO thin-film wires have an advantage of making thickness and quality of covering materials different by usage. Such a property can be an important element to widen application of wires by presenting possibility of using thin-film wires as superconducting material for fault current limiter as well as for high power current application. In this study we intend to prepare YBCO thin-film wires with different stabilizer layers to analyze current application and current restriction properties by stabilizer layers on the basis of detailed researches on changes in current classification properties below critical value.

  • PDF

Development of Inpipe Inspection Robot System for Underground Gas Pipelines (지하매설 가스배관 내부검사용 로봇시스템 개발)

  • 최혁렬;류성무;백상훈;조성휘;송성진;신현재;전재욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.121-129
    • /
    • 2000
  • The robotic automation in NonDestructive Testing(NDT) is a promising field of research and it helps to expand the applications of NDT enormously. Especially, in the case of pipelines which are widely used in various industrial facilities, it is required to secure adequate ways of inspection in the usual maintenance activitites. In this paper, we present a robot system for inpipe inspection of underground urban gas pipelines. The robot is configured as an articulated structure like a snake with a tether cable. Two active driving vehicles are located in front and rear of the system, respectively and passive modules such as a NonDestructive Testing module and a control module are chained between the active vehicles. The proposed system has outstanding mobility by employing a new steering mechanism called Double Active Universal Joint, which makes it possible to cope with complicated configurations of underground pipelines. Characteristic features of the system are described and the construction of the system is briefly outlined.

  • PDF

A Study on the Contention Area Establish of Algorithm from Cable Network based on DOCSIS 3.0 (DOCSIS 3.0 기반 케이블망에서의 경쟁구간 설정 알고리즘에 관한 연구)

  • Kim, Young-Sung;Song, Jae-Jun;Roh, Sun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.69-72
    • /
    • 2007
  • DOCSIS 3.0 Protocol is proposed to make the advance of HFC network. In the DOCSIS based network, the upstream frame is divided into contention section reservation section. CMs to have packets send request messages through the contention section. That two or more CMs sends Request message at the same contention slot makes collison. In this paper, are propose the contention section establlish at algorithm considering of channel-bonding mechanism that is the primary technique of DOCSIS 3.0. Results of simulation display better performance int the number of contention slots and the utilization of contention section.

  • PDF

Investigation on the Powering Performance Prediction for Azimuth Thrusters

  • Van, Suak-Ho;Yoon, Hyun-Se
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • Recently, the application of the electric propulsion system becomes popular because of its advantage over conventional propulsion. However, the complicated flow mechanism and interaction around the azimuth thruster are not fully understood yet, and the studies on the powering performance characteristics with azimuth/pod thrusters are now in progress. The experimental method developed in KRISO(Korea Research Institute of Ships & Ocean Engineering) is introduced and the results of the powering performance tests, consisting of resistance, self-propulsion and propeller open water tests for a cable layer with two azimuth thrusters are presented. For the analysis of powering performance with azimuth thrusters, it is necessary to evaluate the thrust/drag for components of a thruster unit, Extrapolation results could differ according to the various definitions of the propulsion unit; that is the pod, thruster leg and/or nozzle can be treated as hull appendages or as part of propulsion unit, The powering performances based on several definitions are investigated for this vessel. The results of the measurements for the 3-dimensional velocity distribution on the propeller plane are presented to understand the basis of the difference in propulsion characteristics due to the propeller rotational directions.