• Title/Summary/Keyword: cable element

Search Result 386, Processing Time 0.027 seconds

A Study on the Shape Finding and Patterning Procedures for Membrane Structures (막구조의 초기형상 및 재단도 결정알고리즘에 관한 연구)

  • 한상을;이경수;이상주;유용주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.298-305
    • /
    • 1998
  • The purpose of this study is to propose the method of determining the initial fabric membrane structures surface and membrane patterning procedures. Tension structure, such as, fabric membrane structures and cable-net, is stabilized by their initial prestress and boundary condition. The process to find initial structural overall shape of tension structures produced by initial prestress called Shape Finding or Shape Analysis. One of the most important factor for the design of membrane structures is to search initial smooth surface, because unlike steel or concrete building elements which resist loads in bending, all tension structure forces are carried within the surface by membrane stress or cable tension. To obtain initial surface of fabric membrane element in large deformation analysis, the membrane element is idealized as cable using a technique with Force-density method. and that result is compared with well-known nonlinear numerical method, such as Newton-raphson method and Dynamic relaxation method. The shape resulting from Force-density method has been dealt with as the initial membrane shape and used patterning procedures.

  • PDF

Vibration Analysis of a Cable Supported Wind Turbine Tower Model (케이블 지지된 풍력발전기 타워 구조 모델의 진동해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol;Cui, C.X.
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF

A Study on Dynamic Response Analysis of the Cable-Stayed Bridge Using the Stochastic Finite Element Method (확률유한요소법을 이응한 사장교의 동적응답해석)

  • 한성호;정인수;김진홍;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.365-372
    • /
    • 2003
  • In this study, the program which determine the initial cable tension force by tile initial shape analysis for cable stayed bridge is developed. Also, DSFEMP(Dynamic Stochastic Finite Element Analysis Program) is developed to consider the variance of random variables at each step of dynamic response analysis, not use existing methods that apply to the theory of reliability at the final step of structural analysis. In addition, the output from the developed program was compared with the results from DMCSP(Direct Monte Carlo Simulation Program) to prove its validity.

  • PDF

Static and free vibration analysis of shallow sagging inclined cables

  • Li, Zhi-Jiang;Li, Peng;He, Zeng;Cao, Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.145-157
    • /
    • 2013
  • Based on link-model, we conducted a static analysis and computation of a three-span suspended cable structure in the present paper, and obtained the static configuration and tension distribution of the cable. Using the link and beam model based on finite element method, we analyzed the vibration modal of three-span suspended cable structure, and compared with the results obtained from ANSYS using link and beam element. The vibration modals of shallow sagging inclined cables calculated from proposed method agrees well with ANSYS results, which validates the proposed method. As a result, the influence of bend stiffness on in-plane natural frequencies is much greater than that on out-of-plane natural frequencies of inclined cables.

Harmonics based loss characteristics analysis of HTS DC power cable (고조파에 의한 초전도 직류 전력케이블의 손실 특성 분석)

  • Kim, S.K.;Kim, S.H.;Park, M.W.;Yu, I.K.;Lee, S.J.;Cho, J.W.;Sim, K.D.;Won, Y.J.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.19-23
    • /
    • 2011
  • An HTS DC power cable is expected to perfectly eliminate transmission loss caused by resistance. However, when the HTS DC power cable is applied to the power system, loss of the HTS DC power cable is generated due to harmonics caused by HVDC converter. We designed and analyzed the HTS DC power cable with a critical current of 1 kA to investigate the loss characteristics using a finite element method package. In this paper, the loss characteristics caused by harmonics in the HTS DC power cable were analyzed according to order and magnitude of harmonics. Based on the analysis results, the critical current of HTS DC power cable considered with the rated current could be determined to minimize the capacity of cooling system for the design the HTS DC power cable.

A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder

  • Gao, Qiong;Yang, Meng-Gang;Qiao, Jian-Dong
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.567-577
    • /
    • 2017
  • The traditional design procedure of a prestressed concrete (PC) cable-stayed bridge is complex and time-consuming. The designers have to repeatedly modify the configuration of the large number of design parameters to obtain a feasible design scheme which maybe not an economical design. In order to efficiently achieve an optimum design for PC cable-stayed bridges, a multi-parameter optimization technique is proposed. In this optimization technique, the number of prestressing tendons in girder is firstly set as one of design variables, as well as cable forces, cable areas and cross-section sizes of the girders and the towers. The stress and displacement constraints are simultaneously utilized to ensure the safety and serviceability of the structure. The target is to obtain the minimum cost design for a PC cable-stayed bridge. Finally, this optimization technique is carried out by a developed PC cable-stayed bridge optimization program involving the interaction of the parameterized automatically modeling program, the finite element structural analysis program and the optimization algorithm. A low-pylon PC cable-stayed bridge is selected as the example to test the proposed optimization technique. The optimum result verifies the capability and efficiency of the optimization technique, and the significance to optimize the number of prestressing tendons in the girder. The optimum design scheme obtained by the application can achieve a 24.03% reduction in cost, compared with the initial design.

A cable tension identification technology using percussion sound

  • Wang, Guowei;Lu, Wensheng;Yuan, Cheng;Kong, Qingzhao
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.475-484
    • /
    • 2022
  • The loss of cable tension for civil infrastructure reduces structural bearing capacity and causes harmful deformation of structures. Currently, most of the structural health monitoring (SHM) approaches for cables rely on contact transducers. This paper proposes a cable tension identification technology using percussion sound, which provides a fast determination of steel cable tension without physical contact between cables and sensors. Notably, inspired by the concept of tensioning strings for piano tuning, this proposed technology predicts cable tension value by deep learning assisted classification of "percussion" sound from tapping a steel cable. To simulate the non-linear mapping of human ears to sound and to better quantify the minor changes in the high-frequency bands of the sound spectrum generated by percussions, Mel-frequency cepstral coefficients (MFCCs) were extracted as acoustic features to train the deep learning network. A convolutional neural network (CNN) with four convolutional layers and two global pooling layers was employed to identify the cable tension in a certain designed range. Moreover, theoretical and finite element methods (FEM) were conducted to prove the feasibility of the proposed technology. Finally, the identification performance of the proposed technology was experimentally investigated. Overall, results show that the proposed percussion-based technology has great potentials for estimating cable tension for in-situ structural safety assessment.

Modeling Method for Simulating The Winding Motion of a Towing Cable (예인케이블 조출 거동 해석을 위한 모델링 기법)

  • Euntaek Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.473-481
    • /
    • 2024
  • In this paper, we introduce a newly developed winding model to simulate the motion of underwater cable consisting of winch drums. It is assumed that only tension affects the underwater cable motion. This assumption is suitable for simulating the underwater cable motion towed by a navel vessel in a straight ahead maneuver. The underwater cable is discretized using Nodal Position Finite Element Method. This numerical method is known to be suitable for predicting the underwater cable motion with large deformation because it can express geometric nonlinearity. In this paper, the validity of the numerical method was secured by comparing it with the depth information of towing cable measured through sea experiments.

Theoretical investigation on rain-wind induced vibration of a continuous stay cable with given rivulet motion

  • Li, Shouying;Chen, Zhengqing;Li, Shouke
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.481-503
    • /
    • 2014
  • A new theoretical model on rain-wind induced vibration (RWIV) of a continuous stay cable is developed in this paper. Different from the existing theoretical analyses in which the cable was modeled as a segmental rigid element, the proposed scheme focuses on the in-plane and out-of-plane responses of a continuous stay cable, which is identical with the prototype cable on cable-stayed bridge. In order to simplify the complexities, the motion law of the rivulet on the cable surface is assumed as a sinusoidal way according to some results obtained from wind tunnel tests. Quasi-steady theory is utilized to determine the aerodynamic forces on the cable. Equations of motion of the cable are derived in a Cartesian Coordinate System and solved by using finite difference method to obtain the in-plane and out-of-plane responses of the cable. The results show that limited cable amplitudes are achieved within a limited range of wind velocity, which is a unique characteristic of RWIV of stay cable. It appears that the in-plane cable amplitude is much larger than the out-of-plane cable amplitude. Rivulet frequency, rivulet distribution along cable axis, and mean wind velocity profile, all have significant effects on the RWIV responses of the prototype stay cable. The effects of damping ratio on RWIVs of stay cables are carefully investigated, which suggests that damping ratio of 1% is needed to well mitigate RWIVs of prototype stay cables.

Lagrangian Formulation of a Geometrically Exact Nonlinear Frame-Cable Element (기하 비선형성을 엄밀히 고려한 비선형 프레임-케이블요소의 정식화)

  • Jung, Myung-Rag;Min, Dong-Ju;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2012
  • Two nonlinear frame elements taking into account geometric nonlinearity is presented and compared based on the Lagrangian co-rotational formulation. The first frame element is believed to be geometrically-exact because not only tangent stiffness matrices is exactly evaluated including stiffness matrices due to initial deformation but also total member forces are directly determined from total deformations in the deformed state. Particularly two exact tangent stiffness matrices based on total Lagrangian and updated Lagrangian formulation, respectively, are verified to be identical. In the second frame element, the deformed curved shape is regarded as the polygon and current flexural deformations in iteration process are neglected in evaluating tangent stiffness matrices and total member forces. Two numerical examples are given to demonstrate the accuracy and the good performance of the first frame element compared with the second element. Furthermore it is shown that the first frame element can be used in tracing nonlinear behaviors of cable members.