• 제목/요약/키워드: cDPF

검색결과 34건 처리시간 0.024초

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

합성가스(Reforming gas)를 이용한 멀티채널 CDPF의 재생 특성 연구 (Studies on Reforming Gas Assisted Regeneration of Multi-channel Catalyzed DPF)

  • 최광춘;정진화;송순호;전광민
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.138-145
    • /
    • 2011
  • Diesel particulate filter (DPF) systems are being used to reduce the particulate matter emission of diesel vehicles. The DPF should be regenerated after certain driving hours or distance to eliminate soot in the filter. The most widely used method is active regeneration with oxygen at $550{\sim}650^{\circ}C$. Syngas (synthetic gas) can be used to lower the regeneration temperature of Catalyzed DPF (CDPF). The syngas is formed by fuel reforming process of CPOx (Catalytic Partial Oxidation) at specific engine condition (1500rpm, 2bar) using 1wt.% $Rh/CeO_2-ZrO_2$ catalyst. The oxidation characteristics of PM with syngas supplied to filter were studied using partial flow system that can control temperature and flow rate independently. The filter is coated with washcoat loading of $25g/ft^3$ $Pt/Al_2O_3-CeO_2$, and multi-channel CDPF (MC-CDPF) was used. The filter regeneration experiments were performed to investigate the effect of syngas exothermic reaction on soot oxidation in the filter. For this purpose, before oxidation experiment, PM was collected about 8g/L to the filter at engine condition of 1500rpm, bmep 8bar and flow temperature of $200^{\circ}C$ Various conditions of temperature and concentration of syngas were used for the tests. Regeneration of filter started at 2% $H_2$ and CO concentration respectively and inlet temperature of $260^{\circ}C$. Filter Regeneration occurs more actively as the syngas concentration becomes higher.

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

매연여과장치 재생을 위한 커먼레일 디젤엔진의 연소 최적화에 관한 연구 (A Study on the Combustion Optimization of a Common Rail Direct Injection Diesel Engine for Regeneration of the Diesel Particulate Filter)

  • 강중훈;김만영;윤금중
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.167-173
    • /
    • 2005
  • Thermal regeneration means burning-off and cleaning-up the particulate matters piled up in DPF(diesel particulate filter), and it requires both high temperature $(550\~600^{\circ}C)$ and appropriate concentration of oxygen at DPF entrance. However, it is not easy to satisfy such conditions because of the low temperature window of the HSDI(high speed direct injection) diesel engine(approximately $200\~350^{\circ}C$ at cycle). Therefore, this study is focused on the method to raise temperature using the trade-off relation between temperature, oxygen concentration, and the influence of many parameters of common rail injection system including post injection. After performing an optimal mapping of the common rail parameters for regeneration mode, the actual cleaning process during regeneration mode is investigated and evaluated the availability of the regeneration mode mapping through regenerating soot trapped in the DPF.

전기히터방식 매연여과장치의 PM 산화 특성에 관한 연구 (A Study on the PM Oxidation Characteristics of Electrical Heater DPF System)

  • 함윤영;김대하;김경운
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.183-190
    • /
    • 2006
  • For continuously regenerative PM collecting system which adopted thermally stable SiC DPF and electrical heater which was placed upstream of the filter and driven by well constructed control logic, PM oxidation characteristics were investigated varying air flow rate, amounts of PM accumulated on the DPF and filter inlet temperature in order to get optimized PM regeneration performance. This study showed that the operating condition of air flow rate 70 lpm, high PM loading around 30g and filter inlet temperature $700^{\circ}C$ with heat insulation was effective in achieving high regeneration efficiency. Also, in this condition, we could decrease the electric energy consumption by reducing the regeneration time.

Comparative Studies on Soot Oxidation by Nitrogen Dioxide and Ozone

  • Purushothama, C.;Chen, Xin-Hong;Li, Ming-Wei;Chae, Jae-Ou;Sim, Ju-Hyen
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.117-121
    • /
    • 2006
  • Non-thermal plasma technology has many applications in various areas. One of the applications is regenerating diesel particulate filter (DPF). DPF is a widely applied device to control the particulate emission of diesel engines. But it needs periodic removal of clogged soot for the smooth running of engine. Conventional high-temperature removal processes easily leads to the breakage of DPF. Herein, low-temperature plasma formed in a dielectric barrier discharge (DBD) reactor was used to form active oxidants such as ozone and nitrogen dioxide. Experimentally, the effects of discharge power and frequency on the performance of DBD reactor were studied. Two oxidants, $O_3$ and $NO_2$, were synthesized and used for incinerating soot in the used DPF. Performances of the two oxidants on the reduction of soot were compared, and it was found that $NO_2$ is more effective than $O_3$ for getting rid of soot

  • PDF

매연여과장치의 재생특성에 관한 연구(1) (A Study on Regeneration Characteristics in DPF(1))

  • 이병호;이상준;최경호
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.72-79
    • /
    • 1998
  • The goals of this research are to understand the regeneration characteristics in diesel particulate filter(DPF) using the cerium additive and throttling. The effects of throttling duration and spring tension of throttling valve were studied. Measurements were made on a 6 cylinder direct injection diesel engine and included pressure drop, filter inlet temperature, oxygen concentrations, and torque. The major conclusions of this work include; (i) the pressure drop is increased with increase of the engine load and the engine speed; (ii) the inlet temperature of the filter is reached $350^{\circ}C$ with certain engine operating condition which leads to sufficient temperature to regenerate with additive; and (iii) oxygen concentrations in the filter and engine torque during throttling operation are decreased by 2 percent and 36 percent, respectively, which are not critical about regeneration and vehicle operation.

  • PDF

디젤차량의 주행거리에 따른 DPF 윤활유의 특성분석에 관한 실험적 연구 (Experimental Study on the DPF Engine Oil Characteristics Depending on a Mileage of Diesel Automotive)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.318-323
    • /
    • 2009
  • The oil characteristics and wear particles of Diesel engines with a DPF have been investigated as a function of a driving distance. The engine oil of SAE 5W30 with ACEA C3 is used for an oil film lubrication of the engine, which is equipped with Diesel particulate filter. Depending on the oil test results, the kinematic viscosity of used engine oils at 40 is degraded up to 5.1% compared with that of unused engine oils, SAE 5W30. And the kinematic viscosity of used engine oils at 100 is more degraded up to 8.1% compared with that of unused engine oils. The oil characteristic as a function of a mileage is not changed depending on the driving distance because of high quality of engine oils. But the aluminum and copper compounds, which are used as base materials of the engine bearing and a pin bush, are much worn and contaminated for the increased mileage of the car. The oil properties of used engine oils are relatively good except phosphorus and calcium additives, which are heavily engaged in the performance of the oils.

소형디젤엔진용 전기히터방식 매연여과장치의 재생특성 향상을 위한 흡기드로틀링 적용연구 (Application of Intake Throttling for Improving Regeneration Characteristics of an Electrical Heated DPE System)

  • 김홍석;한승한;김진현;조규백;정용일;황재원;한상명
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.77-83
    • /
    • 2005
  • Application of an electric heater is one of attractive methods for active regeneration in DPF systems, but its application has been limited by the capacity of electric power available in vehicles. This study was focused on intake throttling to reduce electrical energy required in the electrical heated DPF system. As results, this study showed the decrease of $30\~50\%$ of intake air mass flow rate and the increase of $20\~60^{\circ}C$ of exhaust gas temperature by the proper control of intake throttling. These intake throttling effects was helpful for regenerable temperature achievement.

DETAILED EXAMINATION OF INVERSE-ANALYSIS PARAMETERS FOR PARTICLE TRAPPING IN SINGLE CHANNEL DIESEL PARTICULATE FILTER

  • Jung, S.C.;Park, J.S.;Yoon, W.S.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.165-177
    • /
    • 2007
  • Predictions of diesel particulate filtration are typically made by modeling of a particle collection, and providing particle trapping levels in terms of a pressure drop. In the present study, a series of single channel diesel particulate filter (DPF) experiments are conducted, the pressure traces are inversely analyzed and essential filtration parameters are deducted for model closure. A DPF filtration model is formulated with a non-linear description of soot cake regression. Dependence of soot cake porosity, packing density, permeability, and soot density in filter walls on convective-diffusive particle transportation is examined. Sensitivity analysis was conducted on model parameters, relevant to the mode of transition. Soot cake porosity and soot packing density show low degrees of dispersion with respect to the Peclet number and have asymptotes at 0.97 and $70\;kg/m^3$, respectively, at high Peclet number. Soot density in the filter wall, which is inversely proportional to filter wall Peclet number, controls the filtration mode transition but exerts no influence on termination pressure drop. The percolation constant greatly alters the extent of pressure drop, but is insensitive to volumetric flow rate or temperature of exhaust gas at fixed operation mode.