• Title/Summary/Keyword: cAMP-pathway

Search Result 180, Processing Time 0.026 seconds

Indentification of IMP in the Muscle of the Ascidian Halocynthia roretzi and Changes of ATP Breakdown Products during Storage (우렁쉥이 Halocynthia roretzi 근육중 IMP의 분포확인 및 저장중 ATP분해생성물의 변화)

  • PARK Choon-Kyu;KIM Woo-Jun;KANG Hoon-I;KANG Tae-Jung;SHIN Suk-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.140-148
    • /
    • 1994
  • Indentification of IMP was carried out and changes in ATP breakdown products during storage at $0^{\circ}C\;ad\;20^{\circ}C$ were investigated in the muscles of ascidian Halocynthia roretzi. For identifying IMP, the ion-exchange column chromatographic method was applied to the perchloric acid extract of the muscle of cultured ascidian collected at the southern coast near Chungmu of Korea in April 1989. The IMP of sample was eluted a little earlier than that of the reference standard, but absorption spectra of both fractions agreed each other. In addition, both fractions gave the identical retention time of HPLC. These results reconfirmed that the ascidian muscle did contain IMP, indicating that ATP was degraded through IMP breakdown pathway, such as $ATP{\to}ADP{\to}AMP{\to}IMP{\to}Ino{\to}Hyp$. Ado was detected in some samples and IMP was detected throughout the experimental periods at both temperatures, but their levels were always very low; they did not increase significantly even when the decreasing rate of AMP was very rapid and concomitant remarkable increase in Ino were observed at the early stage of storage. Those changes in ATP suggest that AMP deaminase activity was present in the ascidian muscle, though it was very low. The main breakdwon pathway of ATP was assumed to be $ATP{\to}ADP{\to}AMP{\to}Ado{\to}Ino{\to}Hyp$. In conclusion, there were two breakdown pathways of ATP in the muscle of ascidian as was the case for the muscle of many marine crustaceans.

  • PDF

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon ($IFN-{\alpha}$), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.

Inhibitory Effects of Cordycepin on Platelet Activation via Regulation of Cyclic Adenosine Monophosphate-downstream Pathway

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2017
  • Platelet activation is essential at the sites of vascular injury, which leads to hemostasis through adhesion, aggregation, and secretion process. However, potent and continuous platelet activation may be an important reason of circulatory disorders. Therefore, proper regulation of platelet activation may be an effective treatment for vascular diseases. In this research, inhibitory effects of cordycepin (3'-deoxyadenosine) on platelet activation were determined. As the results, cordycepin increased cAMP and cGMP, which are intracellular $Ca^{2+}$-antagonists. In addition, cordycepin reduced collagen-elevated $[Ca^{2+}]_i$ mobilization, which was increased by a cAMP-dependent protein kinase (PKA) inhibitor (Rp-8-Br-cAMPS), but not a cGMP-protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). Furthermore, cordycepin increased $IP_3RI$ ($Ser^{1756}$) phosphorylation, indicating inhibition of $IP_3$-mediated $Ca^{2+}$ release from internal store via the $IP_3RI$, which was strongly inhibited by Rp-8-Br-cAMPS, but was not so much inhibited by Rp-8-Br-cGMPS. These results suggest that the reduction of $[Ca^{2+}]_i$ mobilization is caused by the cAMP/A-kinase-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation. In addition, cordycepin increased the phosphorylation of VASP ($Ser^{157}$) known as PKA substrate, but not VASP ($Ser^{239}$) known as PKG substrate. Cordycepin-induced VASP ($Ser^{157}$) phosphorylation was inhibited by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS, and cordycepin inhibited collagen-induced fibrinogen binding to ${\alpha}IIb/{\beta}_3$, which was increased by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS. These results suggest that the inhibition of ${\alpha}IIb/{\beta}_3$ activation is caused by the cAMP/A-kinase-dependent VASP ($Ser^{157}$) phosphorylation. In conclusion, these results demonstrate that inhibitory effects of cordycepin on platelet activation were due to inhibition of $[Ca^{2+}]_i$ mobilization through cAMP-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation and suppression of ${\alpha}IIb/{\beta}_3$ activation through cAMP-dependent VASP ($Ser^{157}$) phosphorylation. These results strongly indicated that cordycepin might have therapeutic or preventive potential for platelet activation-mediated disorders including thrombosis, atherosclerosis, myocardial infarction, or cardiovascular disease.

Anti-thrombotic effects of ginsenoside Rk3 by regulating cAMP and PI3K/MAPK pathway on human platelets

  • Hyuk-Woo Kwon ;Jung-Hae Shin ;Man Hee Rhee ;Chang-Eun Park ;Dong-Ha Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.706-713
    • /
    • 2023
  • Background and objective: The ability to inhibit aggregation has been demonstrated with synthetically derived ginsenoside compounds G-Rp (1, 3, and 4) and ginsenosides naturally found in Panax ginseng 20(S)-Rg3, Rg6, F4, and Ro. Among these compounds, Rk3 (G-Rk3) from Panax ginseng needs to be further explored in order to reveal the mechanisms of action during inhibition. Methodology: Our study focused to investigate the action of G-Rk3 on agonist-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding with integrin αIIbβ3 using flow cytometry, intracellular calcium mobilization, dense granule secretion, and thromboxane B2 secretion. In addition, we checked the regulation of phosphorylation on PI3K/MAPK pathway, and thrombin-induced clot retraction was also observed in platelets rich plasma. Key Results: G-Rk3 significantly increased amounts of cyclic adenosine monophosphate (cAMP) and led to significant phosphorylation of cAMP-dependent kinase substrates vasodilator-stimulated phosphoprotein (VASP) and inositol 1,4,5-trisphosphate receptor (IP3R). In the presence of G-Rk3, dense tubular system Ca2+ was inhibited, and platelet activity was lowered by inactivating the integrin αIIb/β3 and reducing the binding of fibrinogen. Furthermore, the effect of G-Rk3 extended to the inhibition of MAPK and PI3K/Akt phosphorylation resulting in the reduced secretion of intracellular granules and reduced production of TXA2. Lastly, G-Rk3 inhibited platelet aggregation and thrombus formation via fibrin clot. Conclusions and implications: These results suggest that when dealing with cardiovascular diseases brought upon by faulty aggregation among platelets or through the formation of a thrombus, the G-Rk3 compound can play a role as an effective prophylactic or therapeutic agent.

Melanogenic Effect and the Mechanism of Epimedium koreanum Nakai (삼지구엽초의 멜라닌합성 촉진과 작용기전)

  • Cha, Su Bin;Kim, Dan Hee;Mun, Yeun Ja;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.226-232
    • /
    • 2017
  • In this study, ethanol extract of Epimedium koreanum Nakai(EEKN) enhanced melanogenesis by inducing expression of tyrosinase and tyrosinase-related protein-1 (TRP-1). But EEKN did not increase the protein expression of tyrosinase-related protein 2 (TRP-2). Moreover, EEKN enhanced tyrosinase activity and melanin contents of B16F10 cells. EEKN raised the expression of CREB phosphorylation and microphthalmia-associated transcription factor (MITF) as a key transcription factor for tyrosinase expression regulating melanogenesis. And PKC inhibitor H89 supressed that EEKN induced tyrosinase activity, melanin contents, and expression of tyrosinase, TRP-1. These results suggest that melanogenesis-promoting effect of EEKN was correlated with regulation of tyrosinase and TRP-1 protein through cAMP/PKC pathway.

Anti-cancer Effects of Luteolin and Its Novel Mechanism in HepG2 Hepatocarcinoma Cell (루테올린의 간암세포 성장 억제효능 및 새로운 작용기전)

  • Hwang, Jin-Taek;Yang, Hye-Jung
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.507-512
    • /
    • 2010
  • In this study, we investigated the ability of luteolin, a plant derived flavonoid on hepatocarcinoma cell growth using HepG2 cell culture system. We found that luteolin increased the Smac/DIABLO releases, a mitochondrial protein that potentiates apoptosis. Luteolin also induced either transcriptional activity or expression of PPAR-gamma, a target of cancer growth that PPAR-gamma agonist sensitizes to apoptosis in certain cancer types. To find the possible upstream target molecules of PPAR-gamma activated by luteolin treatment, we used compound C, a specific inhibitor of AMP-activated protein kinase. Pre-treatment of Compound C significantly restored the activation or expression of PPAR-gamma stimulated by luteolin. This result indicated that AMPK signaling might be involved in the activation or expression of PPAR-gamma signaling pathway stimulated by luteolin. Moreover, we also found that luteolin inhibited the insulin-stimulated Akt phosphorylation as well as AICAR, a specific AMPK activator. These results propose that luteolin significantly induces cancer cell death through modulating survival signal pathways such as PPAR-gamma and Akt. AMPK signaling pathway may be an upstream regulator for survival signal pathways such as PPAR-gamma and Akt stimulated by luteolin.

Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation via mitogen-activated protein kinase signaling pathway

  • Kee, Ji-Ye;Hong, Seung-Heon
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.282-290
    • /
    • 2019
  • Background: Ginsenoside Rg3 (G-Rg3) is the major bioactive ingredient of Panax ginseng and has many pharmacological effects, including antiadipogenic, antiviral, and anticancer effects. However, the effect of G-Rg3 on mast cell-mediated allergic inflammation has not been investigated. Method: The antiallergic effects of G-Rg3 on allergic inflammation were evaluated using the human and rat mast cell lines HMC-1 and RBL-2H3. Antiallergic effects of G-Rg3 were detected by measuring cyclic adenosine monophosphate (cAMP), detecting calcium influx, and using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and in vivo experiments. Results: G-Rg3 decreased histamine release from activated mast cells by enhancing cAMP levels and calcium influx. Proinflammatory cytokine production was suppressed by G-Rg3 treatment via regulation of the mitogen-activated protein kinases/nuclear factor-kappa B and receptor-interacting protein kinase 2 (RIP2)/caspase-1 signaling pathway in mast cells. Moreover, G-Rg3 protected mice against the IgE-mediated passive cutaneous anaphylaxis reaction and compound 48/80-induced anaphylactic shock. Conclusion: G-Rg3 may serve as an alternative therapeutic agent for improving allergic inflammatory disorders.

Regulation of Cyclic AMP-Response Element Binding Protein Zhangfei (CREBZF) Expression by Estrogen in Mouse Uterus

  • Jang, Hoon
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.95-104
    • /
    • 2018
  • CREBZF (cAMP-response element binding protein zhangfei) is a member of ATF/CREB family, and which regulates various cellular functions by suppressing major factors with direct interaction. In this study, we have examined the expression of CREBZF on mouse endometrium during uterus estrous cycles and estrogen (E2) treatment. In uterus, CREBZF mRNA expression was higher than other organs and mRNA and protein of CREBZF was increased in proestrus phase and decreased in estrus phase. The expression of CREBZF in 3-weeks old mouse uterus was reduced by E2 injection in endometrium. In addition, the expression of progesterone receptor, a marker of E2 in ovariectomized mice was found to be strongly expressed in stroma, while CREBZF was only expressed in epithelium. Also, we conformed that E2-suppressed CREBZF was restored by co-injection of ICI 182,780, an estrogen receptor antagonist. Overall, these results suggest that CREBZF is regulated by estrogen and involved in ER signaling pathway in mouse uterus.