• 제목/요약/키워드: cAMP

검색결과 1,015건 처리시간 0.035초

담즙분비와 Cyclic nucleotides간의 상호관계에 관한 연구 (Study on the Relationship between Biliary Secretion and Cyclic Nucleotides)

  • 이향우;김원준;홍사석;조석준;홍사오;임중기
    • 대한약리학회지
    • /
    • 제18권1호
    • /
    • pp.43-54
    • /
    • 1982
  • Bile formation is a complex process comprised of three separate physiologic mechanism operating at two anatomical sites. At present time, it was known that at least two processes are responsible for total canalicular secretion at the bile canaliculus. One of the processes is bile salt-dependent secretion (BSDS) hypothesis that the active transport of bile salts from plasma to bile provided a primary stimulus for bile formation: the osmotic effect of actively transported bile acid was responsible for the movement of water and ions into bile. The other process is bile salt-independent secretion (ESIS), which is unrelated to bile salt secretion at the canaliculus and which may involve the active transport of sodium. The third process for bile formation involves the biliary ductal epithelium. Secretin-stimulated bile characteristically contained bicarbonate in high concentration. Therefor, it was suggested that secretin stimulated water and bicarbonate secretion from the biliary ductules. One the other hand, it was found that a large amounts of cAMP was present in canine bile but no apparent relationship between bile salt secretion and cAMP content in dog bile. However, bile flow studies in human have demonstrated that secretin and glucagon increase bile cAMP secretion as does secretin in baboons. Secretin increases baboon bile duct mucosal cAMP levels in addition to bile CAMP levels suggesting that in that species secretin-stimulated bile flow may be cAMP mediated. It has been postulated that glucagon and theophylline which increase the bile salt-independent secretion in dogs might act through an increased in liver cAMP content. In a few studies, the possible role of cAMP on bile formation has teen tested by administration of an exogenous derivative of cAMP, dibutyryl cAMP. In the rat, DB cAMP did not modify bile flow, but injection of DB cAMP in the dog promoted an increase in the bile salt-independent secretion. Because of these contradictory results, this study was carried out to examine the relationship between cyclic nucleotides and bile flow due to various bile salts as well as secretin or theophylline. Experiments were performed in rabbits with anesthesia produced by the injection of seconal(30 mg/kg). Rabbits had the cystic duct ligated and the proximal end of the divided common duct cannulated with an appropriately sized polyethylene catheter. A similar catheter was placed into the inferior vena cava for administration of drugs. Bile was collected for determination of cyclic nucleotides and total cholate in 15 min. intervals for a few hours. The results are summerized as followings. 1) Administrations of taurocholic acid or chenodeoxycholic acid increased significantly the concentrations of cAMP and cGMP in bile of rabbits. 2) Concentration of cAMP in bile during the continuous infusion of ursodeoxycholic acid, was remarkedly increased in accordance with the increase of bile flow, while on the contrary concentration of cGMP in bile was decreased significantly. 3) Dehydrocholic acid and deoxycholic acid significantly increased bile flow, total cholate output and cyclic nucleotides in bile. 4) Only cAMP concentration in bile was significantly increased from control value by secretin, while theophylline increased cAMP as well as cGMP in rabbit bile. 5) In addition, the administration of secretin to taurocholic acid-stimulated bile flow increased cAMP while theophylline produced the increases of cAMP and cGMP in bile. 6) The administration of insulin to taurocholic acid-stimulated bile flow decreased cAMP concentration, while on the contrary cGMP was remarkedly increased in rabbit bile.

  • PDF

cAMP 길항제와 PKA 억제제 및 Adenylate Cyclase 촉진제의 백서 파골세포에서 Cathepsin K 생성에 대한 효과 (Inhibitory Effect of Camp Antagonist and Pka Inhibitors, and Stimulatory Effect of Adenylate Cyclase Agonist on Cathepsin K Processing in Cultured Mouse Osteoclasts)

  • 심연수
    • 치위생과학회지
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2006
  • 기계적 자극에 의한 골조직의 개조에서 압박측은 일차적으로 파골세포에 의하여 골기질의 흡수를 위한 유전자 발현에 의하여 기시된다. 그러나 기질을 이루는 유기 단백질의 흡수에 관여하는 단백용해효소의 세포 내 작용 기전은 여전히 완전히 이해되지 않고 있다. 이 연구는 파골세포에서 용해용소체효소인 cathepsin k에 주목하여, cAMP 길항제와 PKA 억제제 및 adenylate cyclase 촉진제에 의한 cathepsin k 생성의 촉진 또는 억제 효과의 기전을 해명하는데 그 목적을 두었다. cAMP 길항제인 Rp-cAMP와 PKA 억제제인 KT5720과 H89는 cathepsin K의 세포 내성숙을 차단하였으며, 대조적으로 adenylate cyclase 촉진제 forskolin은 파골세포에서의 cathepsin K의 생성과 성숙을 유인하는 것으로 나타났다. 특히 cathepsin K의 생성과 성숙에 관여하는 신호전달이 protein kinase C(PKC)와 관련성을 검정하기 위하여 백서의 골세포를 PKC의 선택적 억제제인 calphostin C로 처리하였을 때 아무런 영향이 없는 것으로 나타남으로써 calphostin C는 파골 세포에 의해 매개된 cathepsin K의 생성과 성숙과는 무관한 것으로 밝혀졌다. 이는 파골세포에서의 cathepsin K의 성숙은 cAmp-PKA 신호전달 경로에 의해 조절됨을 의미한다. 분비된 전구효소는 M6P 수용체를 통하여 세포 내로 다시 진입할 수 있는 잠재성을 가지고 있기 때문에 이러한 가능성을 차단하기 위하여 M6P가 존재 또는 결여된 상태에서 cAMP 길항제인 Rp-cAMP와 PKA 억제제인 KT5720 및 H89를 시험하였다. 그 결과 Rp-cAMP, KT5720 또는 H89에 의한 cathepsin K의 M6P용량 비례적 생성 억제가 관찰 되었다. 또한 M6P를 주었을 때 Rp-cAMP, KT5720와 H89의 작용이 증가된을 보였다. 이상에서와 같이 Rp-cAMP, KT5720와 H89의 cathepsin K 생성 방해를 통한 골흡수 억제는 골다공증 또는 관절염의 치료와 같은 골흡수의 억제를 필요로 하는 분야에서의 임상적응용 가능성을 시사한다.

  • PDF

Comparision of Regulatory Action of cAMP and cGMP on the Activation of Neutrophil Responses

  • Han, Chang-Hwang;Yoon, Young-Chul;Shin, Yong-Kyoo;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권1호
    • /
    • pp.97-105
    • /
    • 1997
  • The regulatory role of cyclic nucleotides in the expression of neutrophil responses has been examined. fMLP-stimulated superoxide production in neutrophils was inhibited by dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP), histamine, adenosine + theophylline, cAMP elevating agents, and 8-bromoguanosine 3' ,5' -cyclic monophosphate (8-BrcGMP) and sodium nitroprusside, cGMP elevating agents. Staurosporine, a protein kinase C inhibitor, genistein, a protein tyrosine kinase inhibitor and chlorpromazine, a calmodulin inhibitor, inhibited superoxide production by fMLP, but they did not further affect the action of DBcAMP on the stimulatory action of fMLP. DBcAMP, histamine, adenosine+theophylline and genistein inhibited myeloperoxidease release evoked by fMLP, whereas BrcGMP, sodium nitroprusside and staurosporine did not affect it. The elevation of $[Ca^{2+}]_i$ evoked by fMLP was inhibited by genistein and chlorpromazine but was not affected by staurosporine. DBcAMP exerted little effect on the initial peak in $[Ca^{2+}]_i$ response to fMLP but effectively inhibited the sustained rise. On the other hand, BrcGMP significantly inhibited both phases. fMLP-induced $Mn^{2+}$ influx was inhibited by either DBcAMP or BrcGMP. These results suggest that fMLP-stimulated neutrophil responses may be regulated by cAMP more than cGMP. cAMP and cGMP appear not affect stimulated responses by direct protein kinase C activation. Their regulatory action on the stimulated neutrophil responses may be not influenced by other activation processes.

  • PDF

Isolation of Caenorhabditis elegans Mutants Defective in Chemotaxis toward cAMP

  • Jeong, Jin-A;Cho, Nam-Jeong
    • Animal cells and systems
    • /
    • 제10권4호
    • /
    • pp.237-241
    • /
    • 2006
  • Chemotactic behavior is essential for the survival of animals. However, the mechanism by which animals carry out chemotaxis is poorly understood. To explore the biochemical events underlying chemotaxis, we isolated C. elegans mutants that displayed abnormal chemotactic responses to cAMP, a strong attractant for C. elegans. Based on their responses to other chemoattractants, the mutant animals could be classified into five groups: (1) animals with defective chemotaxis to cAMP only; (2) animals with defective chemotaxis to both cAMP and cGMP; (3) animals with defective chemotaxis to water-soluble attractants; (4) animals with defective chemotaxis to both water-soluble and volatile attractants; and (5) animals with enhanced chemotactic responses. We expect that analyses of these mutants will help understand the molecular mechanisms underlying chemotaxis in C. elegans.

Effect of 0.5 mM Dibutyryl cAMP on Meiotic Maturation during Different Incubation Time and Embryonic Development Following In Vitro Fertilization or Parthenogenetic Activation in Porcine Oocytes

  • Yu, Il-Jeoung
    • 한국수정란이식학회지
    • /
    • 제26권4호
    • /
    • pp.251-256
    • /
    • 2011
  • Presently, the effect of 0.5 mM dibutyryl cAMP (dbcAMP)-supplemented maturation medium during different incubation time on meiotic arrest (germinal vesicle) and resumption (metaphase II) of porcine oocytes and embryonic development of porcine oocytes following in vitro fertilization (IVF) or parthenogenetic activation (PA) was determined. Porcine cumulus oocyte complexes (COCs) were cultured in 0.5 mM dbcAMP for 17, 22, 27, or 42 h, and an additional 22 h without 0.5 mM dbcAMP. The nuclear status was examined at each time point. Oocytes cultured from 39~49 h displayed more than 80% meiotic resumption. More than 85 % of meiotic arrest was presented at 17~22 h. Oocytes were cultured for 22 h with 0.5 mM dbcAMP and additional 22 h without dbcAMP to assess developmental potential following IVF or PA. There were no significant differences in blastocyst rates among the dbcAMPIVF, IVF, dbcAMP-PA, and PA groups, although cleavage rate of IVF group was significantly higher than those of dbcAMP-PA, and PA groups. In conclusion, 0.5 mM dbcAMP influenced meiotic maturation of porcine oocytes depending on incubation time of oocyte, although embryonic development was not improved in both IVF and PA.

cAMP/PKA Agonist Restores the Fasting-Induced Down-Regulation of nNOS Expression in the Paraventricular Nucleus

  • Yoo, Sang-Bae;Lee, Seoul;Lee, Joo-Young;Kim, Bom-Taeck;Lee, Jong-Ho;Jahng, Jeong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권5호
    • /
    • pp.333-337
    • /
    • 2012
  • Gene expression of neuronal nitric oxide synthase (nNOS) changes in the hypothalamic paraventricular nucleus (PVN) depending on feeding conditions, which is decreased during food deprivation and restored by refeeding, and phosphorylated cAMP response element binding protein (pCREB) was suggested to play a role in its regulation. This study was conducted to examine if the fasting-induced down-regulation of the PVN-nNOS expression is restored by activation of cAMP-dependent protein kinase A (cAMP/PKA) pathway. Freely moving rats received intracerebroventricular (icv) injection of cAMP/PKA activator Sp-cAMP (40 nmol) or vehicle (sterilized saline) following 48 h of food deprivation. One hour after drug injections, rats were transcardially perfused with 4% paraformaldehyde, and the PVN tissues were processed for nNOS or pCREB immunohistochemistry. Sp-cAMP significantly increased not only nNOS but also pCREB immunoreactivities in the PVN of food deprived rats. Fastinginduced down-regulation of the PVN-nNOS was restored by 1 h after the icv Sp-cAMP. Results suggest that cAMP/PKA pathway may mediate the regulation of the PVN-nNOS expression depending on different feeding conditions.

Cheese Manufacturing and Bioactive Substance Separation: Separation and Preliminary Purification of cAMP from Whey

  • Liu, Yongfeng;Zhao, Xiaowei;Liu, Manshun;Zhao, Jing
    • 한국축산식품학회지
    • /
    • 제38권1호
    • /
    • pp.52-63
    • /
    • 2018
  • Cheese consumption has been gradually increased in China. However, both the manufacturing process of cheese and the utilization of its main by-product were not well developed. Based on the sensory evaluation, Box-Behnken Design (BBD) was performed in the present study to optimize the cheese processing, which was proved more suitable for Chinese. The optimal parameters were: rennet 0.052 g/L, start culture 0.025 g/L and $CaCl_2$ 0.1 g/L. The composition analysis of fresh bovine milk and whey showed that whey contained most of the soluble nutrients of milk, which indicated that whey was a potential resource of cyclic adenosine-3', 5'-monophosphate (cAMP). Thus, the cAMP was isolated from whey, the results of high-performance liquid chromatography (HPLC) analysis showed that the macroporous adsorption resins (MAR) D290 could increase the concentration of cAMP from $0.058{\mu}mol/mL$ to $0.095{\mu}mol/mL$. We firstly purified the cAMP from the whey, which could become a new source of cAMP.

Stability and Structure of S128A Mutant cAMP Receptor Protein

  • Choi, Young;Gang, JongBack
    • 통합자연과학논문집
    • /
    • 제4권3호
    • /
    • pp.222-226
    • /
    • 2011
  • Cyclic AMP receptor protein(CRP) is involved in the activation of many genes corresponding to catabolite enzymes in Escherichia coli. In this study, mutant CRP(S128A) was used to elucidate the effect of Ser 128 on the cAMP-induced structural change. Based on the protease digestion and thermal analysis, serine 128 in CRP affects the cAMP binding capability and then structural change of CRP protein. In addition, CD spectra in near UV region revealed that S128A CRP retained the sensitive conformation to thermal effect relative to that of wild-type CRP, in spite of identical Tm values in the absence of cAMP.

In Vivo Quantitative Analysis of PKA Subunit Interaction and cAMP Level by Dual Color Fluorescence Cross Correlation Spectroscopy

  • Park, Hyungju;Pack, Changi;Kinjo, Masataka;Kaang, Bong-Kiun
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.87-92
    • /
    • 2008
  • We employed dual color Fluorescence Cross Correlation Spectroscopy (FCCS) to measure the interaction between PKA regulatory (RII) and catalytic subunits (CAT) in living cells. Elevation of intracellular cAMP with forskolin decreased the cross-correlation amplitude between RFP-fused RII (RII -mRFP) and GFP-fused CAT (CAT-EGFP) by 50%, indicating that cAMP elevation leads to dissociation of RII-CAT complexes. Moreover, diffusion coefficient analysis showed that the diffusion rate of CAT-EGFP was significantly increased, suggesting that the decreased RII-CAT association caused by cAMP generated free CAT subunits. Our study demonstrates that in vivo FCCS measurements and their quantitative analysis permit one not only to directly quantify protein-protein interactions but also to estimate changes in the intracellular cAMP concentration.

조골세포내 cAMP 농도 변화가 파골세포 형성에 미치는 영향 (Regulatory Effects of Cyclic AMP on Osteoclast Formation)

  • 전윤나;임미정
    • 약학회지
    • /
    • 제49권1호
    • /
    • pp.109-113
    • /
    • 2005
  • In the present study treatment of IBMX, a phosphodiesterase (PDE) inhibitor, alone induced osteoclast formation in co-cultures of mouse bone marrow cells and calvarial osteoblasts. However, treatment of IBMX in combination with prostaglandin $E_2\;(PGE_2)$ inhibited osteoclast formation in a dose-dependent manner. Among various isozyme-specific PDE inhibitors, a PDE4 specific inhibitor, rolipram, showed similar effects as IBMX on osteoclast formation. To address the involvement of cyclic adenosine monophosphate (cAMP) in osteoclast formation, cAMP concentration in calvarial osteoblasts was investigated. When calvarial osteoblasts were co-cultured with IBMX alone or in combination with $PGE_2$, the patterns of cAMP concentration in calvarial osteoblasts were differ each other suggesting that cAMP in calvarial osteoblasts subtly regulates osteoclast formation.