• Title/Summary/Keyword: c-myc expression

Search Result 136, Processing Time 0.024 seconds

Cytotoxicity of natural killer cells on canine mammary carcinoma cells (개 유선종양세포에 대한 자연살해세포 독성)

  • Jeong, Da-Un;Byeon, Jeong Su;Gu, Na-Yeon;Jung, Moonhee;Kim, Eun Hee;Kim, Hyung-Seok;Cho, In-Soo;Song, Jae-Young;Hyun, Bang-Hun;Lee, Jienny
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • Natural killer (NK) cells play have a crucial role in the early phase of immune responses against various pathogens. We compared characteristics of canine NK cells against two canine mammary carcinoma cell lines, REM134 and CF41.Mg. REM134 showed higher expression of progesterone receptor, proliferative cell nuclear antigen, Ki67, multiple drug resistance, Bmi-1, c-myc, E-cadherin, and human epidermal growth factor receptor type-2 than that of CF41.Mg. For specific expansion and activation of NK cells, we isolated CD5 negative cells from canine peripheral blood mononuclear cells and co-cultured K562 cells in the presence of interleukin (IL)-2, IL-15, and IL-21 for 21 days. As a result, we found that expression markers of activated NK cells such as NKp30, NKp44, NKp46, NKG2D, CD244, perforin, granzyme B, and tumor necrosis factor alpha were highly upregulated. In addition, we found there was upregulated production of interferon gamma of activated NK cells against target cells such as REM134 and CF41.Mg. Specifically, we observed that cytotoxicity of NK cells against target cells was more sensitively reacted to CF41.Mg than REM134. Based on the results of this study, we recommend the development of an experimental application of CF41Mg, which has not been reported in canine mammary carcinoma research.

Non-Polar Myxococcus fulvus KYC4048 Metabolites Exert Anti-Proliferative Effects via Inhibition of Wnt/β-Catenin Signaling in MCF-7 Breast Cancer Cells

  • Park, Juha;Yoo, Hee-Jin;Yu, Ah-Ran;Kim, Hye Ok;Park, Sang Cheol;Jang, Young Pyo;Lee, Chayul;Choe, Wonchae;Kim, Sung Soo;Kang, Insug;Yoon, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.540-549
    • /
    • 2021
  • The Wnt/β-catenin signaling pathway is involved in breast cancer and Myxococcus fulvus KYC4048 is a myxobacterial strain that can produce a variety of bioactive secondary metabolites. Although a previous study revealed that KYC4048 metabolites exhibit anti-proliferative effects on breast cancer, the biochemical mechanism involved in their effects remains unclear. In the present study, KYC4048 metabolites were separated into polar and non-polar (ethyl acetate and n-hexane) fractions via liquid-liquid extraction. The effects of these polar and non-polar KYC4048 metabolites on the viability of breast cancer cells were then determined by MTT assay. Expression levels of Wnt/β-catenin pathway proteins were determined by Western blot analysis. Cell cycle and apoptosis were measured via fluorescence-activated cell sorting (FACS). The results revealed that non-polar KYC4048 metabolites induced cell death of breast cancer cells and decreased expression levels of WNT2B, β-catenin, and Wnt target genes (c-Myc and cyclin D1). Moreover, the n-hexane fraction of non-polar KYC4048 metabolites was found most effective in inducing apoptosis, necrosis, and cell cycle arrest, leading us to conclude that it can induce apoptosis of breast cancer cells through the Wnt/β-catenin pathway. These findings provide evidence that the n-hexane fraction of non-polar KYC4048 metabolites can be developed as a potential therapeutic agent for breast cancer via inhibition of the Wnt/β-catenin pathway.

Novel target genes of hepatocellular carcinoma identified by chip-based functional genomic approaches

  • Kim Dong-Min;Min Sang-Hyun;Lee Dong-Chul;Park Mee-Hee;Lim Soo-Jin;Kim Mi-Na;Han Sang-Mi;Jang Ye-Jin;Yang Suk-Jin;Jung Hai-Yong;Byun Sang-Soon;Lee Jeong-Ju;Oh Jung-Hwa
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.83-89
    • /
    • 2006
  • Cellular functions are carried out by a concerted action of biochemical pathways whose components have genetic interactions. Abnormalities in the activity of the genes that constitute or modulate these pathways frequently have oncogenic implications. Therefore, identifying the upstream regulatory genes for major biochemical pathways and defining their roles in carcinogenesis can have important consequences in establishing an effective target-oriented antitumor strategy We have analyzed the gene expression profiles of human liver cancer samples using cDNA microarray chips enriched in liver and/or stomach-expressed cDNA elements, and identified groups of genes that can tell tumors from non-tumors or normal liver, or classify tumors according to clinical parameters such as tumor grade, age, and inflammation grade. We also set up a high-throughput cell-based assay system (cell chip) that can monitor the activity of major biochemical pathways through a reporter assay. Then, we applied the cell chip platform for the analysis of the HCC-associated genes discovered from transcriptome profiling, and found a number of cancer marker genes having a potential of modulating the activity of cancer-related biochemical pathways such as E2F, TCF, p53, Stat, Smad, AP-1, c-Myc, HIF and NF-kB. Some of these marker genes were previously blown to modulate these pathways, while most of the others not. Upon a fast-track phenotype analysis, a subset of the genes showed increased colony forming abilities in soft agar and altered cell morphology or adherence characteristics in the presence of purified matrix proteins. We are currently analyzing these selected marker genes in more detail for their effects on various biological Processes and for Possible clinical roles in liver cancer development.

  • PDF

LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling

  • Ding, Dayong;Li, Changfeng;Zhao, Tiancheng;Li, Dandan;Yang, Lei;Zhang, Bin
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.423-435
    • /
    • 2018
  • This investigation was aimed at working out the combined role of lncRNA H19, miR-29b and Wnt signaling in the development of colorectal cancer (CRC). In the aggregate, 185 CRC tissues and corresponding para-carcinoma tissues were gathered. The human CRC cell lines (i.e. HT29, HCT116, SW480 and SW620) and normal colorectal mucosa cell line (NCM460) were also purchased. Si-H19, si-NC, miR-29b-3p mimics, miR-29b-3p inhibitor, si-PGRN and negative control (NC) were, respectively, transfected into the CRC cells. Luciferase reporter plasmids were prepared to evaluate the transduction activity of $Wnt/{\beta}-catenin$ signaling pathway, and dual-luciferase reporter gene assay was arranged to confirm the targeted relationship between H19 and miR-29b-3p, as well as between miR-29b-3p and PGRN. Finally, the proliferative and invasive capacities of CRC cells were appraised through transwell, MTT and scratch assays. As a result, overexpressed H19 and down-expressed miR-29b-3p displayed close associations with the CRC patients' poor prognosis (P < 0.05). Besides, transfection with si-H19, miR-29b-3p mimic or si-PGRN were correlated with elevated E-cadherin expression, decreased snail and vimentin expressions, as well as less-motivated cell proliferation and cell metastasis (P < 0.05). Moreover, H19 was verified to directly target miR-29b-3p based on the luciferase reporter gene assay (P < 0.05), and miR-29b-3p also bound to PGRN in a direct manner (P < 0.05). Finally, addition of LiCl ($Wnt/{\beta}-catenin$ pathway activator) or XAV93920 ($Wnt/{\beta}-catenin$ pathway inhibitor) would cause remarkably altered E-cadherin, c-Myc, vimentin and snail expressions, as well as significantly changed transcriptional activity of ${\beta}-catenin/Tcf$ reporter plasmid (P < 0.05). In conclusion, the lncRNA H19/miR-29b-3p/PGRN/Wnt axis counted a great deal for seeking appropriate diagnostic biomarkers and treatment targets for CRC.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

Transgenic tobacco culture cells expressing spike protein gene of porcine epidemic diarrhea virus (돼지 유행성 설사병 바이러스 스파크 단백질 유전자 발현 형질전환 담배 배양세포)

  • Yang, Kyoung-Sil;Kim, Hyeon-Soo;Kwon, Suk-Yoon;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.87-94
    • /
    • 2008
  • Porcine epidemic diarrhea virus (PEDV) is an infectious and highly contagious virus of swine. In order to develop the transgenic tobacco culture cells producing PEDV antigen protein, four vectors expressing PEDV spike protein (SP) gene under the control of a CaMV 35S promoter were constructed. Four fragments of the SP region of PEDV, SP1 (444 bp, 1487-1930 bp), SP2 (1.7 kb, 2300-3987 bp), SP3 (1.4 kb, 1559-2950 bp), and SP4 (2.6 kb, 9-2643 bp) were amplified by PCR and then C-MYC tag was fused to the end of each SP gene, respectively. These cassettes are inserted into the pCAMBIA2300 (named as 35S::SP1-M, 35S::SP2-M 35S::SP3-M, and 35S::SP4-M, respectively). Tobacco (cv. BY-2) cultured cells were transformed by co-cultivation with Agrobacterium tumefaciens harboring expression vector. We selected kanamycin-resistant calli and checked for the presence of the introduced SP gene using PCR, resulting 70% of them showed the foreign gene. We selected the lines with high-level expression of PEDV antigen protein based on dot blot analysis. Southern blot analysis confirmed that the PEDV SP gene was integrated into the genome of the tobacco cultured cells. Northern blot analysis showed that the introduced gene was highly expressed in transgenic cultured cells. Transgenic tobacco cultured cells-derived antigen induced immunogenicity in mice as determined by a plaque reduction neutralization assay. These results suggest that the vectors expressing PEDV spike protein gene in this study will be useful for the development of transgenic plants and cultured cells producing PEDV antigene protein.