• 제목/요약/키워드: c-jun promoter

검색결과 61건 처리시간 0.031초

Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c

  • Jiang, Yong;Liu, He;Liu, Wen-jing;Tong, Hai-bin;Chen, Chang-jun;Lin, Fu-gui;Zhuo, Yan-hang;Qian, Xiao-zhen;Wang, Zeng-bin;Wang, Yu;Zhang, Peng;Jia, Hong-liang
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.292-298
    • /
    • 2016
  • Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells.

한국인 전반적 급진성 치주염 환자에서 IL-6 유전자 다변성에 관한 연구 (IL-6 gene promoter polymorph isms in Korean generalized aggressive periodontitis)

  • 방선정;김일신;김옥수;김영준;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제38권4호
    • /
    • pp.579-588
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the association of generalized aggressive periodontitis with IL-6 promoter gene single nucleotide polymorphisms(SNP). Material and Methods: The study population consisted of 52 generalized aggressive periodontitis patients(GAP) and 30 periodontally healthy control subjects, who were systemically healthy non-smokers. Genomic DNA was obtained from buccal swab. The IL-6 promotor SNP at the positions of -597, -572, and -174 were genotyped by amplifying the polymorphic region using polymerase chain reaction(PCR), restriction enzyme digestion and gel electrophoresis. Result: The genotype distributions for G/G, G/A and A/A genotypes of IL-6 -597 were 30.8%, 40.4%, and 28.8% in the GAP group and 53.3%, 40%, and 6.7% in the control group and were statistically different between 2 groups(p<0.05). Allele 2 frequency of IL-6 -597 were significantly higher in the GAP group than the control group(p<0.01). At the position of IL-6 -572, the distribution for C/C, C/G and G/G genotypes were 23.1%, 55.8% and 21.2% in the GAP group and 20%, 33.3%, and 46.7% in the control group. In female subjects, the genotype distribution were significantly different between 2 groups(p<0.01). In male subjects, allele 2 frequency of IL-6-572 was significantly lower in the GAP group than the control group(p<0.05). The genotype distribution of IL-6 -174 in the GAP group were 96.2%, 3.8% for G/G, G/C genotypes whereas only the G/G genotype was detected in the control group. Conclusion: In conclusion, significant associations were found in IL-6 gene promoter(-597, -572) polymorphisms and generalized aggressive periodontitis. Further cohort study will be necessary in larger population.

정상 돼지 대동맥 내피세포에서 PMA에 의한 thrombospondin-1 발현 억제 (Suppression of Thrombospondin-1 Expression by PMA in the Porcine Aortic Endothelial Cells)

  • Chang, Seo-Yoon;Kang, Jung-Hoon;Hong, Kyong-Ja
    • 생명과학회지
    • /
    • 제14권1호
    • /
    • pp.154-162
    • /
    • 2004
  • 암의 성장과 신생혈관 억제인자로 알려진 thrombospondin-1의 생합성은 다양한 외부자극에 대해 전사단계에서 세포 특이적으로 조절된다. 이전의 연구에서 본 연구자들은 PMA가 정상 돼지 대동맥 내피세포(PAE)에서는 TSP-1의 발현을 감소시키는 반면 사람 간암 세포주인 Hep3B에서는 증가시키는 사실을 발견하였다. PMA 처치에 따른 정상 돼지 대동맥 내피세포에서의 TSP-1의 발현 감소현상은 tsp-1 유전자 조절부위의 염기서열 -767과 -723사이에 존재하는 염기서열이 억제 부위임을 밝혀 이러한 결과를 바탕으로 -767에서 -723 염기서열을 서로 부분 중복되도록 세 종류의 올리고 탐식자 (올리고 탐식자 a-1, -767∼-738; 올리고 탐식자 a-2, -759∼-730; 올리고 탐식자 a-3, -752∼723)를 제작하여 -767과 -723 부위의 특정 염기서열과 이에 결합하는 인자를 EMSA을 수행하여 분석하였다. 실험 결과, PMA 처치에 따른 정상 돼지 대동맥 내피세포에서의 TSP-1 감소는 -752에서 -730 사이의 염기서열이 저해 조절인자와 결합함과 더불어 -767에서 -760과 -752에서 -730 사이의 염기서열들에 촉진 조절인자들이 결합하지 못함으로서 기인된다는 실험적 사실을 관찰하였고. 특히, PMA 처치는 정상 돼지 대동맥 내피세포에서 저해 조절인자의 -752에서 -730 부위에 대한 친화력을 향상시켰으며 이러한 친화력은 c-Jun 항체에 의해 영향을 받지 않았다.

UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer

  • Kim, Min Jun;Lee, Han Ju;Choi, Mee Young;Kang, Sang Soo;Kim, Yoon Sook;Shin, Jeong Kyu;Choi, Wan Sung
    • Molecules and Cells
    • /
    • 제44권3호
    • /
    • pp.146-159
    • /
    • 2021
  • DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.

Suppression of Protein Kinase C and Nuclear Oncogene Expression as Possible Action Mechanisms of Cancer Chemoprevention by Curcumin

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.683-692
    • /
    • 2004
  • Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C(PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and LĸB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)KB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction path-ways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins playa pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.

Prognostic role of EGR1 in breast cancer: a systematic review

  • Saha, Subbroto Kumar;Islam, S.M. Riazul;Saha, Tripti;Nishat, Afsana;Biswas, Polash Kumar;Gil, Minchan;Nkenyereye, Lewis;El-Sappagh, Shaker;Islam, Md. Saiful;Cho, Ssang-Goo
    • BMB Reports
    • /
    • 제54권10호
    • /
    • pp.497-504
    • /
    • 2021
  • EGR1 (early growth response 1) is dysregulated in many cancers and exhibits both tumor suppressor and promoter activities, making it an appealing target for cancer therapy. Here, we used a systematic multi-omics analysis to review the expression of EGR1 and its role in regulating clinical outcomes in breast cancer (BC). EGR1 expression, its promoter methylation, and protein expression pattern were assessed using various publicly available tools. COSMIC-based somatic mutations and cBioPortal-based copy number alterations were analyzed, and the prognostic roles of EGR1 in BC were determined using Prognoscan and Kaplan-Meier Plotter. We also used bc-GenEx-Miner to investigate the EGR1 co-expression profile. EGR1 was more often downregulated in BC tissues than in normal breast tissue, and its knockdown was positively correlated with poor survival. Low EGR1 expression levels were also associated with increased risk of ER+, PR+, and HER2- BCs. High positive correlations were observed among EGR1, DUSP1, FOS, FOSB, CYR61, and JUN mRNA expression in BC tissue. This systematic review suggested that EGR1 expression may serve as a prognostic marker for BC patients and that clinicopathological parameters influence its prognostic utility. In addition to EGR1, DUSP1, FOS, FOSB, CYR61, and JUN can jointly be considered prognostic indicators for BC.

Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

  • Yang, Lu;Chen, Xiaoxiang;Bi, Zirong;Liao, Jun;Zhao, Weian;Huang, Wenqi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.413-423
    • /
    • 2021
  • Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague-Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

옥수수 유전자 기능 분석을 위한 전사인자의 이해 (Transcription Factor for Gene Function Analysis in Maize)

  • 문준철;김재윤;백성범;권영업;송기태;이병무
    • 한국작물학회지
    • /
    • 제59권3호
    • /
    • pp.263-281
    • /
    • 2014
  • 전사인자는 식물에서 유전자 발현을 조절하기 위해 필수적이며, 유전자의 promoter나 enhancer 부위에 결합하며, 기본 전사 조절, 전사의 향상, 발달, 세포내 신호전달, 환경에 반응, 세포 주기의 조절 등의 역할을 수행한다. 옥수수 게놈의 염기서열 분석은 전사인자의 유전자 발현 조절의 기작을 이해하는데 도움을 줄 것으로 기대된다. 과거 옥수수의 전체 게놈의 중복으로 옥수수에서 4,000개 이상의 전사인자가 코딩 될 것으로 예상된다. 본 논문에서는 옥수수의 ABI3/VP1, AP2/EREBP, ARF, ARID, AS2, AUX/IAA, BES1, bHLH, bZIP, C2C2-CO-like, C2C2-Dof, C2C2-GATA, C2C2-YABBY, C2H2, E2F/DP, FHA, GARP-ARR-B, GeBP, GRAS, HMG, HSF, MADS, MYB, MYB-related, NAC, PHD, WRKY 전사인자의 특징을 간략히 서술하고, 전사인자의 염기서열을 분석하여 sequence logo를 통하여 각각의 도메인을 표시하였다. 이러한 전사인자 및 관련된 유전자의 분자생물학적 연구는 옥수수에서 중요한 기능을 하는 유전자의 발굴 및 육종을 위한 목표 유전자의 선발에 도움을 줄 것으로 기대된다.

Functional characterization of ABA signaling components using transient gene expression in rice protoplasts

  • Song, In-Sik;Moon, Seok-Jun;Kim, Jin-Ae;Yoon, Insun;Kwon, Taek-Ryoun;Kim, Beom-Gi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.109-109
    • /
    • 2017
  • The core components of ABA-dependent gene expression signaling have been identified in Arabidopsis and rice. This signaling pathway consists of four major components; group A OsbZIPs, SAPKs, subclass A OsPP2Cs and OsPYL/RCARs in rice. These might be able to make thousands of combinations through interaction networks resulting in diverse signaling responses. We tried to characterize those gene functions using transient gene expression for rice protoplasts (TGERP) because it is instantaneous and convenient system. Firstly, in order to monitor the ABA signaling output, we developed reporter system named pRab16A-fLUC which consists of Rab16A promoter of rice and luciferase gene. It responses more rapidly and sensitively to ABA than pABRC3-fLUC that consists of ABRC3 of HVA1 promoter in TGERP. We screened the reporter responses for over-expression of each signaling components from group A OsbZIPs to OsPYL/RCARs with or without ABA in TGERP. OsbZIP46 induced reporter most strongly among OsbZIPs tested in the presence of ABA. SAPKs could activate the OsbZIP46 even in the ABA independence. Subclass A OsPP2C6 and -8 almost completely inhibited the OsbZIP46 activity in the different degree through the SAPK9. Lastly, OsPYL/RCAR2 and -5 rescued the OsbZIP46 activity in the presence of SAPK9 and OsPP2C6 dependent on ABA concentration and expression level. By using TGERP, we could characterize successfully the effects of ABA dependent gene expression signaling components in rice. In conclusion, TGERP represents very useful technology to study systemic functional genomics in rice or other monocots.

  • PDF

A Gene Encoding $\beta$-amylase from Saprolegnia parasitica and Its Expression in Saccharomyces cerevisiae

  • Kim, Hee-Ok;Park, Jeong-Nam;Shin, Dong-Jun;Lee, HwangHee Blaise;Chun, Soon-Bai;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.529-533
    • /
    • 2001
  • The ${\beta}$-Amylase cDNA fragment from the oomcete Saprolegnia parasitica was cloned by reverse transcription-polymerase chain reaction (RT-PCR) using degenerate oligonucleotide primers derived from conserved ${\beta}$-amylase sequences. The 5'and 3'regions of the $\beta$-amylase gene were amplified using the rapid amplification of cDNA ends (rACE) system. It consisted of an open reading frame of 1,350 bp for a protein of 450 amino acids. Comparison between the genomic and cDNA sequences revealed that the intron was not present in the coding region. The deduced amino acid sequence of the ${\beta}$-amylase gene had a 97% similarity to the ${\beta}$-amylase of Saprolegnia ferax, followed by 41% similarity to those of Arabidopsis thaliana, Hordeum vulgare, and Zea mays. The ${\beta}$-amylase gene was also expressed in Saccharomyces cerevisiae by placing it under the control of the alcohol dehydrogenase gene (ADC1) promoter.

  • PDF