• 제목/요약/키워드: c-Si

검색결과 10,134건 처리시간 0.039초

Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구 (A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

SiC-(Si+C) 소결체의 강도에 미치는 (Si+C)첨가량의 영향 (Effect of(Si+C) Content on the Strength of SiC-(Si+C) Sintered Bodies)

  • 김은태;김완덕;최진영;우정인
    • 한국세라믹학회지
    • /
    • 제23권3호
    • /
    • pp.9-14
    • /
    • 1986
  • $\beta$-SiC bonded SiC bodies were prepared from various conditions such as several compositions of(Si+C)/$\alpha$ -SiC ratio and different firing schedules and were respectively investigated compressive strength MOR and mi-crostructure. One firing schedule which produced the specimens that had $\beta$-SiC neck form with the highest strength was selected and experimented by each firing temperature. results obtained are as follows : 1) The amount of (Si+C) for th highest MOR of SiC-(Si+C) sintered body is 20wt% 2) By adding 20wt% content of (Si+C) and heating up to 1, 500 with soaking 3hrs respectively at 1,150$^{\circ}C$ 1,250$^{\circ}C$ 1,350$^{\circ}C$ and 1,400$^{\circ}C$ the highest MOR of fired specimen was resulted and its microstructure of ma-trix was composed of close $\beta$-SiC neck. 3) Microstructure of $\beta$-SiC were different greatly from each other by firing time and/or quantity of adding mix-ture and it was confirmed that they were composed of neck particle-like and heterogeneous texture. 4)$\beta$-SiC synthesis proceed rapidly at the temperature between 1,250$^{\circ}C$ and 1,350$^{\circ}C$ 5) All of the properties of 85 SiC-20(Si+C) specimen improved according to increasing temperature above 1,350$^{\circ}C$.

  • PDF

$Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향 (Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites)

  • 이창주;김득중
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

반응소결 SiC 재료와 $SiC_f/SiC$ 복합재료의 특성 (CHARACTERIZATION OF MONOLITHIC RS-SiC AND RS-$SiC_f/SiC$ COMPOSITE MATERIALS)

  • 진준옥;이상필;이진경;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.376-380
    • /
    • 2003
  • The microstructure and the mechanical properties of RS-SiC and RS-$SiC_f/SiC$ materials have been investigated in conjunction with the content of residual silicon and porosity. The mechanical properties of RS-SiC materials suffered from the thermal exposure were also examined. RS-SiC based materials bave been fabricated using the complex matrix slurry with different composition ratios of SiC and C panicles. The characterization of RS-SiC based materials was investigated by means of SEM, EDS ~d three point bending test. Based on the mechanical property-microstructure correlation, the high temperature applicability of RS-SiC based materials was discussed.

  • PDF

다공성 SiC-Si 복합체의 전기비저항에 미치는 Si 첨가량의 영향 (Effect of Si Addition on Resistivity of Porous SiC-Si Composite for Heating Element Application)

  • 전신희;이원주;공영민
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.258-263
    • /
    • 2015
  • To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of $1650^{\circ}C$ for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.

6H-SiC 에피층 성장과 결정구조 해석 (6H-SiC epitaxial growth and crystal structure analysis)

  • Kook-Sang Park;Ky-Am Lee
    • 한국결정성장학회지
    • /
    • 제7권2호
    • /
    • pp.197-206
    • /
    • 1997
  • 6H-SiC 위에 SiC 에피층이 화학 기상 증착(CVD)에 의하여 성장되었다. 성장된 SiC 에피층의 결정구조는 X-선 회절과 Raman 분광을 사용하여 조사되었으며, 이 에피층은 6H-SiC로서 성장되었음을 확인하였다. 수정된 Lely법으로 성장된 한 SiC 결정 분말의 결정구조를 확인하기 위하여 전형적인 SiC polytype들의 X-선 회절상을 계산하였으며, 측정된 X-선 회절상과 비교하여 이 SiC 결정에는 15R-SiC가 약간 혼재되어 있음을 확인하였다.

  • PDF

탄화규소섬유와 탄소섬유 하이브리드 직물을 강화재로 한 SiC 매트릭스 세라믹복합재의 기계적물성, 산화 및 삭마 저항성 개선 연구 (Study on Improvement of Mechanical Property, Oxidation and Erosion Resistance of SiC Matrix Ceramic Composites Reinforced by Hybrid Fabric Composed of SiC and Carbon Fiber)

  • 윤병일;김명주;김재성;권향주;윤성태;김정일
    • Composites Research
    • /
    • 제32권3호
    • /
    • pp.148-157
    • /
    • 2019
  • 본 연구에서는 탄소섬유, 탄화규소섬유 그리고 하이브리드섬유를 강화재로 하여 TGCVI와 PIP 혼합 공정으로 $C_f/SiC$, $SiC_f/SiC$, $C_f-SiC_f/SiC$의 세라믹복합재를 제조하였다. 열충격싸이클시험, 3점 굴곡시험과 Oxy-Acetylene 토취 시험후에 그들의 기계적물성, 산화저항성과 내삭마성을 평가하였다. $C_f/SiC$복합재는 온도 증가에 따라서 기계적물성의 감소와 준 연성의 파단모드, 그리고 높은 삭마량을 보였다. $SiC_f/SiC$복합재는 $C_f/SiC$ 복합재에 비하여 강한 기계적물성, 낮은 삭마량을 그리고 취성의 파단모드를 나타냈다. 한편 하이브리드 복합재는 가장 우수한 기계적물성과 $SiC_f/SiC$보다는 연성의 파단모드 그리고 $C_f/SiC$ 보다 낮은 삭마량의 결과를 나타냈다. Oxy-Acetylene 토취 시험 중에 SiC매트릭스는 산화되어 $SiO_2$층을 형성하였으며, 특히 이 층은 $C_f-SiC_f/SiC$$SiC_f/SiC$ 복합재에서 섬유의 추가적인 삭마를 막는 역할을 하는 것으로 나타났다. 결론적으로 낮은 기공율을 갖는 하이브리드 복합재를 제조한다면, $C_f/SiC$의 산화로 인한 기계적물성의 감소와 $SiC_f/SiC$ 복합재의 취성 파단모드의 개선으로 고온 산화분위기에서 고온열구조재로의 적용이 높을 것으로 기대한다.

SiC 장섬유 강화 SiC 기지 복합재료의 고온강도 특성 (High Temeprature Strength Property of Continuous SiC Fiber Reinforced SiC Matrix Composites)

  • 신윤석;이상필;이진경;이준현
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.102-105
    • /
    • 2005
  • The mechanical properties of $SiC_f/SiC$ composites reinforced with continuous SiC fiber have been investigated in conjunction with the detailed analysis of their microstructures. Especially, the effect of test temperature on the characterization of $SiC_f/SiC$ composites was examined. In this composite system, a braiding Hi-Nicalon SiC fibric was selected as a reinforcement. $SiC_f/SiC$ composites have been fabricated by the reaction sintering process, using the complex matrix slurry with a constant composition ratio of SiC and C particles. The characterization of $RS-SiC_f/SiC$ composites was investigated by means of SEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, the high temperature applicability of $RS-SiC_f/SiC$ composites was discussed.

  • PDF

SiC의 산화에 의한 $Al_2O_3/SiC$ 복합체의 제조 (Fabrication of $Al_2O_3/SiC$ Composite Through Oxidation of SiC)

  • 김경환;이홍림;이형민;홍기곤
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.535-543
    • /
    • 1997
  • The surface of SiC particles were partially oxidized to produce SiO2 layers on the SiC particles to prepare Al2O3/SiC composite by formation of mullite bonds between the grains of Al2O3 and SiC during sintering at 1$600^{\circ}C$. This process is considered to enable the sintering of Al2O3/SiC composite at lower temperature and also to relieve the stress, produced by thermal expansion mismatch between Al2O3 and SiC. In fact, Al2O3/SiC composite prepared by oxidation of SiC was observed to be more effectively sintered and densified at lower temperature. Maximum density, flexural strength and microhardness were obtained with 5.65 vol% of mullite content in Al2O3/SiC composite.

  • PDF

Al-Si/$SiC_p$ 복합재료에서 SiC의 편석에 미치는 응고 조건의 영향 (Influence of Solidification Condition on the Segregation of SiC Particles in the Al-Si/$SiC_p$ Composites)

  • 김종찬;권혁무
    • 한국주조공학회지
    • /
    • 제17권2호
    • /
    • pp.180-187
    • /
    • 1997
  • The influence of solidification condition on the segregation of SiC particles in the $Al-xSi/6wt%SiC_p$(x: 6, 10, 14, 18${\cdot}$wt%) composites was investigated in the study. The results are as follows: 1) During the counter-gravity unidirectional solidification of $Al-Si/SiC_p$ composites melt, most of the SiC particles are pushed to the top of the casting. 2) The SiC particles pushing in the $Al-Si/SiC_p$ composite melts are not observed, when the interface velocity of melts increases more than 1.41 ${\mu}m/sec$. 3) The SiC particles are entrapped in the interdendrite regions, when the sizes of SiC particles in the $Al-Si/SiC_p$ composites are large than ${\varphi}22{\mu}m$.

  • PDF