• Title/Summary/Keyword: c-BN Film

Search Result 32, Processing Time 0.019 seconds

Comparative Analysis of Heat Sink and Adhesion Properties of Thermal Conductive Particles for Sheet Adhesive (열전도성 입자를 활용한 시트용 점착제의 점착 특성과 방열특성 연구)

  • Kim, Yeong Su;Park, Sang Ha;Choi, Jeong Woo;Kong, Lee Seong;Yun, Gwan Han;Min, Byung Gil;Lee, Seung Han
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • Improvement of heat sink technology related to the continuous implementation performance and extension of device-life in circumstance of easy heating and more compact space has been becoming more important issue as multi-functional integration and miniaturization trend of electronic gadgets and products has been generalized. In this study, it purposed to minimize of decline of the heat diffusivity by gluing polymer through compounding of inorganic particles which have thermal conductive properties. We used NH-9300 as base resin and used inorganic fillers such as silicon carbide(SiC), aluminum nitride(AlN), and boron nitride(BN) to improve heat diffusivity. After making film which was made from 100 part of acrylic resin mixed hardener(1.0 part more or less) with inorganic particles. The film was matured at $80^{\circ}C$ for 24h. Diffusivity were tested according to sorts of particles and density of particles as well as size and structure of particle to improve the effect of heat sink in view of morphology assessing diffusivity by LFA(Netzsch/LFA 447 Nano Flash) and adhesion strength by UTM(Universal Testing Machine). The correlation between diffusivity of pure inorganic particles and composite as well as the relation between density and morphology of inorganic particles has been studied. The study related morphology showed that globular type had superior diffusivity at low density of 25% but on the contarary globular type was inferior to non-globular type at high density of 80%.

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF