• Title/Summary/Keyword: c-$Al_2O_3$

Search Result 2,878, Processing Time 0.031 seconds

Microstructure and Properties of Cu Dispersed Al2O3 Nanocomposites Prepared by Pressureless Sintering (상압소결법으로 제조한 Cu 입자 분산 Al2O3 나노복합재료의 미세조직 및 특성)

  • Lee, Kyong-Hwan;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.280-284
    • /
    • 2009
  • The pressureless sintering behavior of $Al_2O_3$/Cu powder mixtures, prepared from $Al_2O_3$/CuO and $Al_2O_3$/Cu-nitrate, has been investigated. Microstructural observation revealed that $Al_2O_3$ powders with nano-sized Cu particles could be synthesized by hydrogen reduction method. The specimens, pressureless-sintered at $1400^{\circ}C$ for 4 min using infrared heating furnace with the heating rate of $200^{\circ}C$/min, showed the relative density of above 90%. Maximum hardness of 16.1 GPa was obtained in $Al_2O_3$/MgO/Cu nanocomposites. The nanocomposites exhibited the enhanced fracture toughness of 4.3-5.7 $MPa{\cdot}m^{1/2}$, compared with monolithic $Al_2O_3$. The mechanical properties were discussed in terms of microstructural characteristics.

Hydrothermal Stability of (Y, Nb)-TZP/$Al_2O_3$ Composites

  • Lee, Deuk-Yong;Kim, Dae-Joon;Lee, Seung-Jae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.371-374
    • /
    • 1999
  • Y2O3 and Nb2O5 co-doped tetragonal zirconia polycrystals((Y, Nb)-TZP) containing 10 to 30 vol% $Al_2O_3$ were prepared and hydrothermal stability of the composites was evaluated after aging for 5 h at the temperature range of $150^{\circ}C$ $250^{\circ}C$ under 4 MPa $H_2O$ vapor pressure in an autoclave. The (Y, Nb)-TZP/Al2O3 composites showed excellent phase stability under the hydrothermal conditions, as compared with the 3Y-TZP/$Al_2O_3$ composites, due to the combined effects of the Y-Nb ordering in the $t-ZrO_2$ lattice, the reduction of oxygen vacancy concentration, and the $Al_2O_3$ addition. The strength and fracture toughness of the (Y, Nb)-TZP/$Al_2O_3$ composite, containing 20 vol% of 2.8 $Al_2O_3$ particles, were 700 MPa and 8.1 MP.$am^{1/2}$, respectively.

  • PDF

Mechanical Properties of the Ceramics of the System Al2O3-ZrO2-Y2O3 Prepared by the Precipitation Method (침전법에 의한 Al2O3-ZrO2-Y2O3계 세라믹스의 기계적 특성)

  • 김준태;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.364-372
    • /
    • 1988
  • The mechanical properties and microstructure of ceramics of the system Al2O3-ZrO2-Y2O3 sintered at 1$650^{\circ}C$ for 2h after powder preparation by the precipitation method from Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were investigated. The Al2O3-ZrO2-Y2O3 ceramics sintered at 1$650^{\circ}C$ for 2h after mixing alpha-Al2O3 and ZrO2-Y2O3 powders, both were separately precipitated and calcined, were found to have the relative density higher than 97.5% so that the strengthening and toughening mechanisms could be explained mainly as the stress-induced phase transformation. On the other hand, the sintered bodies prepared by co-precipitating the three starting materials were measured to have the relative density lower than 85% so that the degradation of strength were observed above 15 vol% ZrO2 contents due to the high porosity by which the effect of stress-induced phase transformation was assumed to be depressed.

  • PDF

Hydrothermal synthesis of $(Li,Al)MnO_2(OH)_2$:Co compound (수열법에 의한 $(Li,Al)MnO_{2}(OH)_{2}$:Co 화합물의 합성)

  • 최종건;황완인;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.154-159
    • /
    • 2001
  • (Li,Al)$MnO_2(OH)_2$:Co compound was synthesized by hydrothermal method. $MnO_2$, LiOH.$H_2$O, $Co_3O_4$ and $Al(OH)_3$ were used as starting materials and the optimum conditions for synthesis of monolithic (Li,Al)$MnO_2(OH)_2$:Co compound were as follows : reaction temperature; $200^{\circ}C$, reaction time; 3 days, hydrothermal solvent; 3M-KOH solution, reaction apparatus; seesaw type, atomic ratio of Li:Al:Mn;Co = 1:2.1:2.5~2:0.5~1. Monolithic(Li,Al)$MnO_2(HO)_2$:Co compound synthesized in this work had a god crystallinity and excellent color forming effect as a blue pigment compatible with natural mineral. The particles of the synthesized (Li,Al)$MnO_2(OH)_2$:Co compound have hexagonal plate shape with the size of 0.5~1 $\mu\textrm{m}$.

  • PDF

The Effect of Fly Ash Composition and Reaction Conditions on Hydrothermal Synthesis of Zeolitic Materials (Fly ash 조성(組成)과 반응조건(反應條件)이 zeolite성(性) 물질(物質)의 열수합성(熱水合成)에 미치는 영향(影響))

  • Choi, Choong-Lyeal;Lee, Dong-Hoon;Park, Man;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • This study was performed to examine the effect of initial composition ratio and various reaction conditions on CEC and crystallinity of the product in hydrothermal synthesis of zeolitic materials from fly ash. Na-P1 zeolite was formed from the mixture with $SiO_2/Al_2O_3$ ratio above 2.55, however from the mixture with $SiO_2/Al_2O_3$ ratio below 2.25 hydroxy sodalite was formed. The CEC of reaction product(Na-P1 zeolite) treated with 3N-NaOH, $Na_2O/Al_2O_3$ ratio 2.55 and $SiO_2/Al_2O_3$ ratio 2.0 for 12 hours at $103^{\circ}C$ was about $285cmol^+kg^{-1}$, which was higher than those of the products of other reaction condition. The crystallinity of Na-P1 zeolite as high as 45.1% was attained at the optimum reaction condition of 2N-NaOH, $SiO_2/Al_2O_3$ ratio 2.55, $Na_2O/Al_2O_3$ ratio 1.5 for 12 hours at $103^{\circ}C$. The XRD peak of the reaction product could be measured at 7.16, 5.04, 4.12, 3.18, $2.69{\AA}$ and tetragonal pillar shape observed by SEM image be characteristic for Na-P1 zeolite. Judging from the result, it should be considered the optimum synthesis condition for Na-P1 zeolite from fly ash was 2~3N NaOH, $SiO_2/Al_2O_3$ ratio 2.55 and $Na_2O/Al_2O_3$ ratio 1.5~2.0 for 12 hours at $80{\sim}103^{\circ}C$.

  • PDF

Fabrication of Al2O3 Dispersed Porous Cu by Freeze Drying of CuO-Al2O3/Camphene Slurry (CuO-Al2O3/camphene 슬러리의 동결건조 공정에 의한 Al2O3 입자분산 Cu 다공체 제조)

  • Kang, Hyunji;Riu, Doh-Hyung;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • Porous Cu with a dispersion of nanoscale $Al_2O_3$ particles is fabricated by freeze-drying $CuO-Al_2O_3$/camphene slurry and sintering. Camphene slurries with $CuO-Al_2O_3$ contents of 5 and 10 vol% are unidirectionally frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at $700^{\circ}C$ and $800^{\circ}C$ in $H_2$ atmosphere. The sintered samples show large pores of $100{\mu}m$ in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ${\sim}10{\mu}m$ in size. The size of the large pores decreases with increasing $CuO-Al_2O_3$ content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm $Al_2O_3$ particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and $H_2$ reducing process.

The Effect of SiON Film on the Blistering Phenomenon of Al2O3 Rear Passivation Layer in PERC Solar Cell

  • Jo, Guk-Hyeon;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.364.1-364.1
    • /
    • 2014
  • 고효율 태양전지로 가기 위해서는 태양전지의 후면 패시베이션은 중요한 역할을 한다. 후면 패시베이션 막으로 사용되는 $Al_2O_3$ 막은 $Al_2O_3/Si$ 계면에서 높은 화학적 패시베이션과 Negative Fixed Charge를 가지고 있어 적합한 Barrier막으로 여겨진다. 하지만 이후에 전면 Metal paste의 소성 공정에 의해 $800^{\circ}C$이상 온도를 올려주게 됨에 따라 $Al_2O_3$ 막 내부에 결합되어 있던 수소들이 방출되어 blister가 생성되고 막 질은 떨어지게 된다. 우리는 blister가 생성되는 것을 방지하기 위한 방법으로 PECVD 장비로 SiNx를 증착하는 공정 중에 $N_2O$ 가스를 첨가하여 SiON 막을 증착하였다. SiON막은 $N_2O$가스량을 조절하여 막의 특성을 변화시키고 변화에 따라 소성시 막에 미치는 영향에 대하여 조사하였다. 공정을 위해 $156{\times}156mm2$, $200{\mu}m$, $0.5-3.0{\Omega}{\cdot}cm$ and p-type 단결정 실리콘 웨이퍼를 사용하였고, $Al_2O_3$ 막을 올리기 전에 RCA Cleaning 실행하였다. ALD 장비를 통해 $Al_2O_3$ 막을 10nm 증착하였고 RF-PECVD 장비로 SiNx막과 SiON막을 80nm 증착하였다. 소성로에서 $850^{\circ}C$ ($680^{\circ}C$) 5초동안 소성하고 QSSPC를 통해 유효 반송자 수명을 알아보았다.

  • PDF

Effect of the YAG with fracture toughness and electric conductive of $\beta$-Sic-$TiB_2$ ($\beta$-Sic-$TiB_2$복합체의 파괴인성과 전기전도도젠 미치는 YAG의 영향)

  • Yoon, Se-Won;Ju, Jin-Young;Shin, Yong-Deok;Yeo, Dong-Hun;Park, Ki-Yub
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1545-1547
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$TiB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density and the mechanical properties of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_3$ contents because YAG of reaction between $Al_{2}O_3$ and $Y_{2}O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism. the fracture toughness showed 7.1MPa${\cdot}m^{1/2}$. For composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature The electrical resistivity and the resistance temperature coefficient respectively showed the lowest of 6.0${\sim}10^{-4}{\Omega}{\cdot}$ cm and 3.1${\times}10^{-3}/^{\circ}C$ for composite added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of 25$^{\circ}C$ to 700$^{\circ}C$.

  • PDF

Growth of Synthetic Emerald Single Crystal by Flux Method (Flux법에 의한 합성 에메랄드 단결정 육성)

  • Park, Sun-Min;Lee, Chul-Tae;Kim, Ho-Kun
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-42
    • /
    • 1996
  • Growth of synthetic emerald [($(BeO)_3(Al_{2-x}Cr_xO_3)(SiO_2)_6$] single crystals was carried out by flux method. In this study, the starting materials were prepared by stoichiometric mixing of BeO, $Al_2O_3$ and $SiO_2$ as reaching components. The conditions for the growth of synthetic emerald single crystals are as follows : temperature range ; $1150{\sim}900^{\circ}C$, cooling rate ; 2, 4, $10^{\circ}C/hr$, flux ; $Li_2CO_3$, $V_2O_5$, dopant ; $Cr_2O_3$. The sizes of $Cr_2O_3$emerald single crystals depending on 2, 4, $10^{\circ}C/hr$ cooling rates. The obtained emerald single crystal was characterized and the following results were obtained : lattice parameter : a=0.921nm, c=0.917nm, crystal system ; hexagonal, crystal size ; max. $0.80{\times}0.95mm^2(c{\times}m)$, orientation ; (1000), $m(10{\bar{1}}0)$.

  • PDF

Synthesis and Sintering Behavior of Zr2WP2O12 Ceramics (Zr2WP2O12 세라믹스의 합성과 소결거동 연구)

  • Kim, Yong-Hyeon;Kim, Nam-Ok;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.586-591
    • /
    • 2012
  • $Zr_2WP_2O_{12}$ powder, which has a negative thermal expansion coefficient, was synthesized by a solid-state reaction with $ZrO_2$, $WO_3$ and $NH_4H_2PO_4$ as the starting materials. The synthesis behavior was dependent on the solvent media used in the wet mixing process. The $Zr_2WP_2O_{12}$ powder prepared with a solvent consisting of D. I. water was fully crystallized at $1200^{\circ}C$, showing a sub-micron particle size. According to the results obtained from a thermal analysis, a $ZrP_2O_7$ was synthesized at a low temperature of $310^{\circ}C$, after which it was reacted with $WO_3$ at $1200^{\circ}C$. A new sintering additive, $Al(OH)_3$, was applied for the densification of the $Zr_2WP_2O_{12}$ powders. The cold isostatically pressed samples were densified with 1 wt% $Al(OH)_3$ additive or more at $1200^{\circ}C$ for 4 h. The main densification mechanism was liquid-phase sintering due to the liquid which resulted from the reaction with amorphous or unstable $Al_2O_3$ and $WO_3$. The densified $Zr_2WP_2O_{12}$ ceramics showed a relative density of 90% and a negative thermal expansion coefficient of $-3.4{\times}10^{-6}/^{\circ}C$. When using ${\alpha}-Al_2O_3$ as the sintering agent, densification was not observed at $1200^{\circ}C$.