• Title/Summary/Keyword: by-anchovy sauce

Search Result 66, Processing Time 0.028 seconds

Processing and Characteristics of Canned Salt-fermented Anchovy Engraulis japonica Fillet using Tomato Paste Sauce (토마토페이스트소스첨가 멸치(Engraulis japonica) 육젓필레통조림의 제조 및 특성)

  • Kwon, Soon-Jae;Lee, Jae-Dong;Yoon, Moon-Joo;Park, Jin-Hyo;Je, Hae-Soo;Kong, Cheung-Sik;Noh, Yuni;Kim, Jeong-Gyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.719-725
    • /
    • 2014
  • This study was investigated for the purpose of obtaining basic data for application to the canning process of salt-fermented anchovy Engraulis japonica fillet using tomato paste. The salt fermented anchovy fillet was prepared by fermenting anchovy fillet with salt 15% at $5^{\circ}C$ for 15 days and then cold air drying the salt-fermented anchovy fillet for 1 h at $16{\pm}1^{\circ}C$. The dried salt-fermented anchovy fillet 85 g was filled with 60 g of tomato paste sauce (tomato paste 42%, gum guar 1.0%, salt 2.0%, starch syrup 2.0%, cooking wine 1%, water 52%) and seamed by vacuum seamer in 301-3 can, then sterilized at Fo 9 and 11 min in a steam system retort at $121^{\circ}C$, respectively. The factors such as chemical composition, pH, total volatile basic nitrogen (TVB-N), amino-N, color value (L, a, b), texture profile, thiobarbituric acid (TBA) value, sensory evaluation and viable bacterial count of the canned salt-fermented anchovy fillet were measured. Texture value of the product sterilized at Fo 11 min was higher than at Fo 9 min condition. In both sterilized cans, the viable bacterial counts were not detected. There was no remarkable difference in physicochemical between sterilization conditions. As a result of sensory evaluation, most sensory evaluation inspector judged that it was difficult to distinguish the sensory difference of both products sterilized at Fo 9 min and at 11 min. The results showed that sterilization of Fo 9 min was more desirable than that of Fo 11 min to prepare canned salt-fermented anchovy fillet using tomato paste sauce, because this condition is more economical.

Peptide Properties of Rapid Salted and Fermented Anchovy Sauce Using Various Pretenses 2. Characterization of Hydrolytic Peptides from Anchovy Sauce and Actomyosin (단백질 분해효소를 이용하여 제조한 속성 멸치 액젓의 펩티드 특성 2. 멸치 액젓 및 Actomyosin의 가수분해 펩티드의 특성)

  • CHOI Yeung-Joon;KIM In-Soo;CHO Young-Je;SEO Duck-Hoon;LEE Tae-Gee;PARK Yeung-Beom;PARK Jae-Woon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.4
    • /
    • pp.488-494
    • /
    • 1999
  • Hydrolytic peptides of salted and fermented anchovy sauce, and anchovy actomyosin for the development of a rapid fermentation method with conventional tastes and flavors were studied. The optimal temperatures of crude enzymes isolated from anchor, liver and viscera of squid were 55, 40$\~$45 and $45\~60^{\circ}C$, respectively. Crude enzyme isolated from anchovy was more effective on hydrolysis of anchovy actomyosin than that from squid liver and viscera. But the crude enzyme from squid liver was less effective on NaCl than that from anchovy. Three peptides occurred in anchovy actomyosin hydrolyzed with crude enzymes from anchovy and squid liver for 30 min. Their molecular weight were determined by Superdex 200 gel chromatography as 10,800, 5,800 and 2,600 dalton. When anchovy sauce was hydrolyzed with crude enzymes of anchovy, squid liver and viscera, and Protamex during 70 days, ranges of their low molecular weight of hydrolyzed peptides were 300$\~$1,000dalton detected by Sephadex G-50 and their major amino acid compositions were glutamic acid, glycine and alanine, which was related with conventional tastes. Those amino acid compositions were similar to those of anchovy sauce hydrolyzed with squid liver, In the case of Protamex treatment, hydrolyzed peptides had high levels of isoleucine and leucine, being associated with the bitter, but a low level of glutamic acid.

  • PDF

The Formation of N-Nitrosamine during Fermentation of Kakdugi (깍두기 숙성 중 N-Nitrosamine의 생성)

  • 성낙주;구경숙;신정혜;정미자;이수정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • Traditional kakdugi prepared from salted radish by the addition of fermented shrimp or anchovy sauce along with seasonings and spices, e.g., red pepper powder, garlic or ginger, which has been examined for the formation of volatile nitrosamine(NA) during its fermentation at 5oC and 17oC. Changes of acidity were increased; while, those of ascorbic acid and pH were continually de creased and besides concentrations of salt were scarcely observed during the fermentation of kakdugi at 5oC and 17oC. High initial levels of nitrate in radish followed by a gradual decreased in nitrate concentration, along with increasing levels of nitrite, during its fermentation. During the fermentation of kakdugi, NA such as N nitrosodimethylamine(NDMA) and N nitrosodiethylamine(NDEA) was identified; these NA in kakdugi that had been prepared with shrimp sauce contained in the higher levels than kimchi that had been prepared with anchovy sauce, and both NDMA and NDEA were detected higher levels in the fermented sample at 17oC than in the fermented sample at 5oC. In kakdugi, NDMA and NDEA levels were continually increased during its fermentation; its levels after 35 days fermentation at 17oC were 0.5~16.7 and 0~5.2 g/kg in added shrimp sauce sample, 0. 5~8.7 and 0~4.7 g/kg in added anchovy sauce sample and 0.4~4.8 and 0~2.4 g/kg in control, respectively. The occurrence of NA such as NDMA and NDEA appeared to arise from the fermented sauce and radish used in preparation of the kimchi.

  • PDF

Sanitation and Quality Improvement of Salted and Fermented Anchovy Sauce by Gamma Irradiation (멸치액젓의 위생적 품질향상을 위한 감마선 조사기술 이용)

  • 김재현;안현주;김정옥;류기형;육홍선;이영남;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1035-1041
    • /
    • 2000
  • Gamma irradiation was used to improve sanitation and quality of salted and fermented anchovy sauce. For commercial production, comparison with currently using sterilization methods, such as micro-filtration and heat treatment were also conducted. Control was prepared without irradiation and sterilization process. Microbiological, physiochemical, and sensory qualities were analyzed to observe the Quality changes during the storage. Irradiation at 5 kGy or above and micro-filtration process completely eliminated microorganisms detected in this study As irradiation dose increased, the color appeared brighter and irradiation at 5 kGy or above showed similar color L-value to that of sample treated with microfiltration. The color L, a, b-value of heat-treated sample always showed lower. The pH, salinity, and viscosity were sustained during storage. From the results of sensory evaluation, the samples treated with gamma irradiation and microfiltration obtained better scores than control or heat-sterilized. Gamma irradiation to salted and fermented anchovy sauce presented the best quality products among different sterilizing methods, especially at 5 kGy dose. Therefore, gamma irradiation can be successfully applied to commercial large scale production as a new sanitation technology with improved quality.

  • PDF

Effect of Starter and Salt-Fermented Anchovy Extracts on the Quality of Kimchi Sauce and Geotjeori Kimchi (Starter 및 멸치액젓 첨가가 김치양념 및 겉절이 김치의 품질에 미치는 영향)

  • Choi, Taek-Kwon;Park, So-Hee;Yoo, Jin-Hyun;Lim, Ho-Soo;Hwang, Sung-Yeon;Jo, Jae-Sun
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.2
    • /
    • pp.96-104
    • /
    • 2003
  • This study was performed in order to investigate the effect of Leuconostoc mesenteroides, Lactobacillus plantarum and salt fermented anchovy extracts on Kimchi sauce. The sauce was fermented more rapidly by addition of Leu. mesenteroids or salt fermented anchovy extracts on the early fermentation stage than the control, but it was fermented slowly on the late fermentation stage. When L. plantarum was added to the Kimchi on the early fermentation stage, the acidity of Kimchi didn't show a significant difference from the control, but acidity was remarkably increased on the late stage. Coliform group was disappeared when acidity of sauce was higher than 0.8% during fermentation. It was controlled by Leu. mesenteroides but not by L. plantarum. Total count and lactic acid bacterial count of the sauces with starter were $6.30{\times}10^6{\sim}1.0{\times}10^7\;CFU/mL$ and $1.04{\sim}2.04{\times}10^6\;CFU/mL$, respectively, but those of the control sauce were $10^6\;CFU/mL$ and $10^4\;CFU/mL$, respectively. Those count of the sauce with starter were higher than those of the control sauce on the later stage of fermentation. Organoleptic quality of the sauce with Leu. mesenteroides was superior to that with L. plantarum.

Processing of Functional Enzyme-hydrolyzed Sauce from Anchovy Sauce and Soy Sauce Processing By-products 1. Optimization of Hydrolysis Conditions by Response Surface Methodology (멸치액젓 및 간장 가공부산물을 이용한 기능성 효소분해간장의 제조 1. 반응표면분석법에 의한 가수분해물 제조조건의 최적화)

  • Kim, Hun;Lee, Jung-Suck;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.653-657
    • /
    • 2002
  • The hydrolysis conditions (enzym $e_strate ratio, time and temperature) of the mixture of anchovy sauce residue (ASR) and soy sauce residue (SSR) after fermentation by Flavourzyme 500M $G^{TM}$ were optimized using response surface methodology (RSM) for pretreatment of processing functional enzyme-hydrolyzed sauce. A model equation obtained from RSM was hydrolysis ratio (%) = 28.157+1.929enzym $e_strate ratio+1.818time+2.038temperature-1.093temperatur $e^2$, whose stationary point showed saddle point. From the ridge analysis of the saddle point, the conditions producing the highest hydrolysis ratio was determined as follows: 0.49% enzym $e_strate ratio; 3.55hr hydrolysis time; 62.5$^{\circ}C$ hydrolysis temperature. Adding of SSR to the mixture of water and ASR improved sensory qualities of mixture, so it seemed that SSR has masking effects on off-flavor and taste of ASR.R.of ASR.R.

Studies on Proteolytic and Fibrinolytic Activity of Bacillus subtilis JM-3 Isolated from Anchovy Sauce (멸치액젓으로부터 분리한 Bacillus subtilis JM-3의 단백질 분해활성과 혈전 용해 활성에 관한 연구)

  • Lee, Sang-Soo;Kim, Sang-Moo;Park, Uk-Yeon;Kim, Hee-Yun;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.283-289
    • /
    • 2002
  • This study was performed to search for potential microorganism that has rapid fermenting and physiological function from anchovy sauce. We isolated three bacterial strains, JM-1, JM-2, and JM-3 with proteolytic and fibrinolytic activity from anchovy sauce. Among the 3 bacterial strains, JM-3 showed the strongest proteolytic and fibrinolytic activity. Bacterial strain JM-3 was gram-positive rod, motile and formed endospore. The 16S rRNA of bacterial strain JM-3 was amplified by PCR and then its sequence was determined by ABI 310 genetic analyzer. The 16S rRNA sequence of bacterial strain JM-3 was compared to BLAST DNA database and identified to Bacillus subtilis with 99% of homology. The optimum temperature, pH and NaCl concentration for growth of B. subtilis JM-3 were $40^{\circ}C$, 5.0 and 0%, respectively. The optimum temperature, pH and NaCl concentration for proteolytic and fibrinolytic enzyme production of B. subtilis JM-3 were same as optimum conditions for growth. At 20% of NaCl concentration which is common NaCl concentration of fish sauce, B. subtilis JM-3 showed about 60% of proteolytic and fibrinolytic activity of 0% NaCl concentration. From above results, we found that B. subtilis JM-3 will be able to used for starter of functional fish sauce.

Component changes in Commercial Salt-Fermented Anchovy Sauce by Long Fermentation (장기 숙성에 따른 시판 멸치액젓의 성분변화)

  • Nam, Ki-Ho;Jang, Mi-Soon;Park, Hee-Yeon
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.101-109
    • /
    • 2012
  • To investigate changes of components in salt-fermented anchovy sauce by long fermentation, various chemical properties were examined. The moisture, crude protein, crude lipid, and crude ash contents of the anchovy sauce by fermentation were 67.48~69.35%, 5.47~7.40%, 0.27~0.47% and 23.82~24.12%. The moisture and pH was decreased slightly, but the contents of crude protein, crude lipid, acidity and amino-N degree were increased gradually by long fermentation. And contents of crude ash, VBN and salinity showed almost no change. Total free amino acid contents of 1, 3, 6, 9 and 12 year fermented samples were 8,762.2 mg%, 9,484.6 mg%, 10,085.8 mg%, 10,650.7 mg% and 10,123.7 mg% respectively. Major free amino acid of samples were glutamic acid, leucine, lysine, alanine, valine, isoleucine in ordor. The samples were caused by their composition of the free amino acids rations, in which were umami, sweet and bitter taste in the extracts of anchovy during long fermentation. In Hunter values, fermented samples were generally lower in L, b values whereas higher in a, ${\Delta}E$ values. And absorbance at 453 nm was increased gradually by fermentation. Sensory evaluation result of samples, 6 years sample was the highest than the others in overall acceptance.

Preparation and Food Characteristics of Seasoned Anchovy Sauce with Improved Bitterness by Treatment of Aminopeptidase Active Fraction Derived from Common Squid Todarodes pacificus Hepatopancreas (살 오징어(Todarodes pacificus) 간췌장 유래 Aminopeptidase 활성획분에 의해 쓴맛이 개선된 멸치 조미소스의 제조 및 식품특성)

  • Yoon, In Seong;Kim, Jin-Soo;Choe, Yu Ri;Sohn, Suk Kyung;Lee, Ji Un;Kang, Sang In;Kwon, In Sang;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.849-860
    • /
    • 2021
  • This study investigated the preparation of seasoned anchovy sauce (SAS) and its functional characteristics by using aminopeptidase active fractions (AAFs) derived from squid Todarodes pacificus hepatopancreas as a bitter taste improver. As the base of the SAS, a hydrolysate (AAAH) prepared by continuously treating raw anchovies with Alcalase-AAF was used. The high-performance liquid chromatography profile of the AAAH suggested that the action of AAFs decreased the hydrophobicity of the N-terminal peptide related to bitterness in the protein hydrolysates. SAS was prepared by blending with the AAAH and other ingredients. The crude protein (2.5%), carbohydrates (18.4%), amino acid-nitrogen (1,325.1 mg/100 mL), and total free and released amino acids (FRAAs, 700.2 mg/100 mL) of SAS were higher than those of commercial anchovy sauce (CAS). Sensory evaluation revealed that SAS was superior to CAS in flavor, color, and taste. The main FRAAs of SAS were glycine (16.8%), alanine (13.2%), glutamic acid (7.8%), and leucine (7.3%). The amino acids that had a major influence on the taste according to the SAS taste values were glutamic acid, aspartic acid, alanine, and histidine. The angiotensin-converting enzyme inhibitory (2.21 mg/mL) and antioxidant activities (3.58 mg/mL) of SAS were superior to those of CAS.

Quality Characteristics of Anchovy Sauce Prepared with Sea Tangle, Ume, Tochukaso and Chitosan during Storage (다시마, 청매실, 동충하초 및 키토산이 첨가된 멸치액젓의 저장 중 품질특성)

  • Choi, Geun-Pyo;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.291-297
    • /
    • 2005
  • Fish sauce is one of the most popular fermented fish products over the world. But it is usually manufactured with high salt concentration (>25%) and long periods of elaboration. In order to increase the consumption of fish sauce, the functional anchovy sauces with low salt concentrations (14 and 17%) were manufactured by adding sea tangle (Kjellamaniealla crassifolia), ume (Prunus mume Sieb. et Zucc), tochukaso (Paecilomyces japonica), and chitosan. On 50 days of storage, pH of all treatments decreased to 5.1, while the amount of lactic acid increased continuously as storage period increased. The amounts of VBN, amino-N, and TBA were highest on 50 days of storage and then kept constantly or decreased a little thereafter. The numbers of total viable cell, lactic acid bacteria, proteolytic bacteria, and fungi increased very slowly as storage period increased.