• 제목/요약/키워드: butyric acid

검색결과 638건 처리시간 0.038초

부티르산 생산을 위한 클로스트리듐 대사공학 전략 (Metabolic Engineering Strategies of Clostridia for Butyric Acid Production)

  • 노현지;장유신
    • KSBB Journal
    • /
    • 제32권3호
    • /
    • pp.169-173
    • /
    • 2017
  • Butyric acid (C4 carboxylic acid) is used as an important compound in food, pharmaceutical, and chemical industries. Currently, butyric acid is mainly produced at the industrial scale through the petrochemical processes. Bio-based butyric acid has also gained attention, because the consumer prefers the food and pharmaceutical ingredients that are produced through fermentation. Clostridia is one of the well-known butyric acid producers, and massively engineered for enhanced production of butyric acid. In this paper, we reviewed the metabolic pathway of clostridia, especially Clostridium acetobutylicum and Clostridium tyrobutyricum, and summarized the metabolic engineering strategies of the strains for enhanced production of butyric acid.

Butyric Acid Fermentation of Sodium Hydroxide Pretreated Rice Straw with Undefined Mixed Culture

  • Ai, Binling;Li, Jianzheng;Chi, Xue;Meng, Jia;Liu, Chong;Shi, En
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.629-638
    • /
    • 2014
  • This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at $50^{\circ}C$ for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review

  • Lyudmila K. Gerunova;Taras V. Gerunov;Lydia G. P'yanova;Alexander V. Lavrenov;Anna V. Sedanova;Maria S. Delyagina;Yuri N. Fedorov;Natalia V. Kornienko;Yana O. Kryuchek;Anna A. Tarasenko
    • Journal of Veterinary Science
    • /
    • 제25권2호
    • /
    • pp.23.1-23.15
    • /
    • 2024
  • The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.

Production of Weak Acid by Anaerobic Fermentation of Soil and Antifungal Effect

  • Kim, Hong-Lim;Jung, Bong-Nam;Sohn, Bo-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.691-694
    • /
    • 2007
  • Acetic acid and butyric acid were produced by the anaerobic fermentation of soil mixed with wheat or rice bran. The concentration of acetic acid produced in the wheat and rice bran-treated soil was 31.2mM and 8mM, respectively, whereas the concentration of butyric acid in the wheat and rice bran-treated soil was 25.0mM and 8mM, respectively. The minimal fungicidal concentration (MFC) for all the fungal strains was 40-60mM acetic acid, 20-40mM butyric acid, and 40-60mM mixture of acetic acid: butyric acid (1:1, v/v). Consequently, the efficacy of mixing wheat-bran with soil to control soil diseases was demonstrated.

바이오에너지 및 바이오화학원료인 C4-C6 생산 (Production of C4-C6 for Bioenergy and Biomaterials)

  • 김병천;이성철;상병인
    • 공업화학
    • /
    • 제22권5호
    • /
    • pp.447-452
    • /
    • 2011
  • 석유자원의 고갈이 에너지 및 화학원료물질로 재생 가능한 바이오매스의 이용성을 증가시키고 있다. 본 총설에서는 바이오에너지 및 바이오화학원료인 C4-C6 생산에 관해 논하고자 한다. 주요한 C4 물질인 n-butanol과 n-butyric acid를 다량 생산하는 미생물은 Clostridium tyrobutyricum, Clostridium beijerinckii, Clostridium acetobutylicum이다. 대표적인 C6 물질인 n-hexanoic acid는 Clostridium kluyveri와 Megasphaera elsdenii가 다량 생산한다. 미생물 발효에 의해 보고된 n-butanol, n-butyric acid, n-hexanoic acid의 최대 생산량은 각각 21, 55, 19 g/L이었다. 배양과정에서 이들 생산물의 제거는 최종산물억제의 감소로 미생물에 의한 n-butanol, n-butyric acid, n-hexanoic acid의 생산량을 증가시켰다. 특히 C6 물질인 n-hexanoic acid는 n-hexanol로 될 수 있는 고 부가가치 물질로 생물학적 생산 연구가 꾸준히 진행 중인데, 신규한 미생물인 Clostridium sp. BS1은 galactitol을 이용하여 5 g/L의 n-hexanoic acid를 생산하였다.

최적화 기법을 활용한 n-pentanol+n-propionic acid 및 n-pentanol+n-butyric acid계의 하부 인화점 추산 (The Estimation of Lower Flash Point for n-Pentanol+n-Propionic Acid and n-Pentanol+n-Butyric Acid Systems Using Optimization Method)

  • 하동명;이성진
    • 한국가스학회지
    • /
    • 제11권4호
    • /
    • pp.73-78
    • /
    • 2007
  • 가연성 이성분계 혼합물인 n-pentanol+n-propicnic acid 및 n-pentanol+n-butyric acid 계의 하년 인화점이 상압 조건 하에서 Pensky-Martens 밀폐식 장치에 의해 측성되었다. 실험값을 라울의 법칙과 최적화 기법을 활용한 예측간과 비교하였다. A.A.D.(average absolute deviation)에서 알 수 있듯이, 최적화 기법을 활용한 예측값이 Raoult의 법칙에 의한 예측값 보다 실험값에 더욱 근사하였다.

  • PDF

한국(韓國) 간장중(中)의 유기산(有機酸)에 대(對)하여 (Organic Acid in Korean Soy-Sauces)

  • 장지현
    • Applied Biological Chemistry
    • /
    • 제8권
    • /
    • pp.1-9
    • /
    • 1967
  • Korean soy-sauces were orepared by the ordinary and impreved method and its analyses on the organic acid. The results obtained is as following: 1. In analysing general components of prepared soy-sauce, total acid, volatile acid and non-volatile acid were found more in improved soy-sauce than in ordinary soy-sauce. 2. Volatile organic acid were analysed by gas-chromatography method. As a result, the followings was attained: a) In the ordinary soy-sauce, formic acid, acetic acid, propionic acid, and butyric acid were detected. Butyric acid was in the highest amount and then propionic acid, acetic acid and formic acid are followed in the order. b) In the improved soy-sauce, formic acid, acetic acid, propionic acid and butyric acid were detected. Acetic acid was in the highest amount and then propionic acid, butyric acid and formic acid are followed in the nrder. 3. Non-volatile organic acid were analysed by paper partition chromatography method. As a result, the followings were attained: a) Lactic, glutaric, fumaric, malonic, malic, glycolic, oxalic, tartaric, and succinic acid and two unknown spots were detected in ordinary soysauce. Lactic acid was in the highest amount and then succinic, glycolic, oxalic, tartaric, glutaric, malic, fumaric and malonic acid are followed in the order. b) Lactic, glutaric, malonic, malic, glycolic, tartaric, succinic and tgalacturonic acid and two unknown spots were detected in the improved soy-sauce. Lactic acid was in the highest amount and then succinic, glycolic, malic, glutaric, tartaric, galacturonic and malonic acid are followed in the order. 4. ${\alpha}-keto$ acid were analysed by paper partition chromatography. As a result, the followings were attained: Pyruvic acid and ${\alpha}-keto$ glutaric acid and an unknown spot were detected in the ordinary and improved soy-sauce. Pyruvic acid was in the highest amount and then ${\alpha}-keto$ glutaric acid are ollowed in the order. 5. Stale flavor in the ordinary soy-sauces seems to be partly affected by butyric acid and propionic acid. 6. Substances influencing taste, such as lactic acid and succinic acid, were found more in improved soy-sauce than ordinary soy-sauce.

  • PDF

Effects of Sea Urchin Shell Powder on Volatile Fatty Acids in Poultry Litter: A Field Study

  • Chung, Tae Ho
    • 한국환경과학회지
    • /
    • 제23권2호
    • /
    • pp.331-333
    • /
    • 2014
  • We investigated the effects of sea urchin shell powder on 2 volatile fatty acids, acetic and butyric acid, in poultry litter. A total of 60 1-d-old male broiler chicks (Arbor Acres) were allocated to 2 treatments (basal diet and 1% sea urchin shell powder) with 3 replicates of 10 birds each. During the 4-week experimental period, significant differences in acetic acid and butyric acid concentrations were observed between treatments (P < 0.05), except for acetic acid at 1 week. Additions of 1% sea urchin shell powder resulted in lower acetic and butyric acid concentrations compared to the litter of control birds. We conclude that the sea urchin shell powder used in this study might prove beneficial in reducing environmental pollution caused by poultry litter.

Candida rugosa 변아주를 이용한 D-\beta-Hydroxybutyric Acid 발효공정의 최적화 (Optimization of D-\beta-hydroxybutyric Acid Fermentation Using a Mutant of Candida Rugosa IFO0750)

  • 경수현;신철수
    • 한국미생물·생명공학회지
    • /
    • 제28권6호
    • /
    • pp.355-360
    • /
    • 2000
  • Candida rugosa IFO0750의 UV-변이주를 제조하여 butyric acid를 D-$\beta$-hydroxybutyrin acid(이하 D-$\beta$-HBA)로 전환하는 데 이용하였다. 후보 변이주 중 활성이 가장 높은 Candida rugosa CM42를 이용하여 발효를 수행한 후 NMR 분석, polarimeter 분석 등을 통하여 생성된 물질이 D-$\beta$-HBA 임을 확인하였다. Chemostar 배양을 이용하여 D-$\beta$-HBA 발효 생산의 주요 영향인자를 분석하였으며, 균체의 활성을 나타내는 비생산성의 최대치는 균체의 비증식 속도를 0.06, 발효조 내의 glucose와 butyric acid의 농도를 각각 10g/L와 8.7 g/L로 각각 유지 할 때 얻어졌다. 회분식 배양 중에 glucose와 butyric acid를 공급하여 발효조 내의 glucose 및 butyric acid 농도를 최적조건으로 유지하는 fed-batch 발효를 수행하였다. 배양 180 시간 후에 D-$\beta$-HBA 농도가 약 12.4 g/L에 도달하였으며 회분식 발효에 비하여 4.7배 증가하였다.

  • PDF

N,N'-Dimethylethylenediamine-N,N'-di-${\alpha}$-butyric acid 의 세자리 리간드 아미노산 코발트 (III) 착물 (Trifunctional Amino Acid-Co(III) Complexes of N,N'-Dimethylethylenediamine-N,N'-di-${\alpha}$-butyric Acid)

  • 전무진;정해권;정진승
    • 대한화학회지
    • /
    • 제33권5호
    • /
    • pp.504-509
    • /
    • 1989
  • N,N'-dimethylethylenediamine-N,N'-di-${\alpha}$-butyric acid(dmedba)와 세자리 아미노산과의 코발트(III) 착물인 [Co(dmedba)(L-aa)] (L-aa = S-methyl-L-cysteine, L-methionine, L-glutamic acid, L-aspartic acid)는$ s-cis-[Co(dmedba)Cl_2]-^ 착물과 아미노산과의 반응으로부터 얻었다. 아미노산들은 [Co(dmedda)(L-dd)] 착물과 같이 아민과 카르복실그룹을 통하여 배위되었다. 이 착물들의 구조는 ^1H-NMR, IR, UV$ 스펙트럼 데이타와 원소분석으로 확인하였다.

  • PDF