• Title/Summary/Keyword: butyl lactate

Search Result 19, Processing Time 0.025 seconds

Esterification of Lactic Acid with Alcohols (젓산과 알코올간의 에스테르화 반응)

  • Kim, Jong-Hwa;Han, Jee-Yeun;Lee, Sang-Wha
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.243-249
    • /
    • 2005
  • Esterification of lactic acid with alcohols catalyzed by Amberlyst-type ion exchange resins and sulfuric acid was carried out in a batch reactor with total /or partial recycle of distilled condensates, respectively. The esterification of lactic acid in the total-recycling reactor (n-butanol/lactic acid = 4, $100^{\circ}C$) was promoted by decreasing the residual water and increasing the mole ratio of n-butanol/lactic acid. Also, it was confirmed that methanol with simple structure and tert-butanol with superior substitution reactivity were more effective in increasing the conversion of esterification reaction, compared to ethanol, n-butanol, and iso-butanol. In a partial-recycling reactor (n-butanol/ammonium lactate = 4, $115^{\circ}C$), the conversion of ammonium lactate into butyl lactate with 1.0 wt% Amberyst-type resins was higher in comparison to that with 0.2 mol $H_2SO_4$ (per 1.0 mol ammonium lactate). The esterification was gradually occurred during the initial stage of reaction in the presence of solid catalyst, whereas the initial addition of $H_2SO_4$ did not affect the initial rate of esterification reaction because of ammonium sulfate formation by the neutralizing reaction of ammonium lactate with sulfuric acid.

Protective Effects of Acanthoic acid on Tertiary-Butyl Hydroperoxide or Carbon tetrachloride-Induced Liver Injury

  • Park, Eun-Jeon;Nan, Ji-Xing;Zhao, Yu-Zhe;Lee, Sung-Hee;Kim, Young-Ho;Nam, Jeong-Bum;Lee, Jung-Joon;Sohn, Dong-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.298.1-298.1
    • /
    • 2003
  • The aim of this study was to investigate the protective effect of acanthoic acid on liver injury induced by either tertiary-butyl hydroperoxide (tBH) or carbon tetrachloride in vitro and in vivo. Acanthoic acid, (-)-pimara-9(11),15-diene-19-oic acid, is a diterpene isolated from the root bark of Acanthopanax koreanum. In in vitro study, the cellular leakage of lactate dehydrogenase (LDH) with 1.5 mM tBH for 1 j, were significantly inhibited by treatment with acanthoic acid(25 and 5mg/mL). (omitted)

  • PDF

Effect of Pyunggangaeuljihyul-tang (Pinggankaiyuzhixue-tang) on Toxic Agent Induced Liver Cell Damage (평간개울지혈탕이 독성약물에 의한 간조직 손상에 미치는 영향)

  • 오세광;김원일;김우환
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.96-107
    • /
    • 2003
  • Objective : This study was undertaken to determine if Pyunggangaeuljihyul-tang (Pinggankaiyuzhixue-tang, PG) has a protective effect against cell injury induced by various toxic agents in rabbit liver, Methods : Cell injury in vitro was estimated by measuring lactate dehydrogenase (LDH), and that in vivo was estimated by measuring alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity in serum. Lipid peroxidation was examined by measuring malondialdehyde, a product of lipid per oxidation. Results : PG prevented the LDH release by $CCl_4$, mercury, menadione, and tert-butyl hydroperoxide treatment in vitro in liver slices. The extent of protection by 2% PG was similar to that of $10{\mu\textrm{M}}$ N,N'-diphenyl-p-phenylenedianline, a potent antioxidant, in tert-butyl hydroperoxide-induced LDH release. PG also prevented lipid peroxidation and depletion of cellular ATP induced by Hg. Hg causes motphological changes including cell necrosis and its effect was significantly prevented by PG. When rats were treated intraperitoneatly with 0.5 ml/kg of $CCl_4$, serum alanine aminotransferase and aspartate aminotransferase activities were increased compared with the control, which was significantly inhibited by pretreatment of PG. PG also prevented reduction in GSH and lipid peroxidation induced by $CCl_4$ Conclusion : These results suggest that PG exerts aprotective effect against various toxic agents by its antioxidant action in liver tissues. Thus, PG may be used in prevention and treatment of drug-induced liver cell injury. However, the precise mechanisms of PG protection remain to be determined.

  • PDF

Processed Panax ginseng, Sun Ginseng, Decreases Oxidative Damage Induced by tert-butyl Hydroperoxide via Regulation of Antioxidant Enzyme and Anti-apoptotic Molecules in HepG2 Cells

  • Lee, Hye-Jin;Kim, Jin-Hee;Lee, Seo-Young;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.248-255
    • /
    • 2012
  • Potential antioxidant effect of processed ginseng (sun ginseng, SG) on oxidative stress generated by tert-butyl hydroperoxide (t-BHP) was investigated in HepG2 cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and lactate dehydrogenase (LDH) leakage test demonstrated that SG dose-dependently prevents a loss of cell viability against t-BHP-induced oxidative stress. Also, SG treatment dose-dependently relieved the increment of activities of hepatic enzymes, such as aspartate aminotrasferase and alanine aminotransferase, and lipid peroxidation mediated by t-BHP treatment in HepG2 cells. SG increased the gene expression of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. However, high dose of SG treatment caused decrease in mRNA level of glutathione peroxidase as compared to low dosage of SG-treated cells. The gene expression of glutathione reductase was found to be slightly increased by SG treatment. In addition, SG extract attributed its hepaprotective effect by inducing the mRNA level of bcl-2 and bcl-xL but reducing that of bax. But, the gene expression of bad showed no significant change in SG-treated HepG2 cells. These findings suggest that SG has hepatoprotective effect by showing reduction of LDH release, activities of hepatic enzymes and lipid peroxidation and regulating the gene expression of antioxidant enzymes and apoptosis-related molecules against oxdative stress caused by t-BHP in HepG2 cells.

Enzyme hydrolysate of silk protein suppresses tert-butyl hydroperoxide-induced hepatotoxicity by enhancing antioxidant activity in rats

  • Suh, Hyung Joo;Kang, Bobin;Kim, Chae-Young;Choi, Hyeon-Son
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.550-558
    • /
    • 2017
  • The purpose of current study is to investigate the beneficial effect of enzyme (Alcalase) hydrolysates of silk protein in rat. Alcalase-treated silk protein hydrolysate (ATSH) itself did not show any cytotoxicity on the hepatic tissues and blood biochemistry, similar to the normal condition. ATSH played a protective role in tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity and liver damage. The values of AST (aspartate aminotransferase) and ALT (alanine aminotransferase), which are the indicators of the liver function, were effectively alleviated with the ATSH treatment in a dose dependent manner. The level of Lactate dehydrogenase (LDH) and Malondialdehyde (MDA), which were increased with t-BHP treatment, were significantly reduced by ATSH. High dose of ATSH (2 g/kg) reduced the t-BHP-induced LDH release by 48%. Antioxidant and antioxidant enzymes in liver cells were significantly increased by ATSH treatment in their level and activities. ATSH (2 g/kg) increased glutathione (GSH), an intracelluar antioxidant, by 2.5-fold compared with the t-BHP treated group. The activities of glutathione-s-transferase (GST), superoxide dismutase (SOD), and catalase were also elevated by 38%, 60%, and 45%, respectively, with ATSH (2 g/kg) treatment. The antioxidative effect of ATSH was recapitulated to the protection from t-BHP induced liver damages in hematoxylin and eosin (H&E) staining. Thus, ATSH might be used as a hepatoprotective agent.

Anti-oxidative Effects of Dendrobii Herba on Toxic Agent Induced Kidney Cell Injury (석곡(石斛)의 항산화 효과)

  • Kim, Young-Gyun;Yang, Gi-Ho;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.20 no.4
    • /
    • pp.53-60
    • /
    • 2005
  • Objectives : This study was carried out to determine if Dendrobii Herba have protective effect against cell injury induced by various toxic agents in rat kidney slices. Water(DWe) and methanol(DMe) extracts were prepared for this experiment. Methods : Cell injury was estimated by measuring lactate dehydrogenase(LDH). Lipid peroxidation was examined by measuring malondialdehyde, a product of lipid peroxidation. Results : DMe prevented the LDH release by $CCl_4$, menadione, tert-butyl hydroperoxide and mercury treatment in vitro in kidney slices, but DWe prevented the LDH release by $CCl_4$ and mercury. DMe also prevented reduction in GSH and lipid peroxidation induced by $CCl_4$ and mercury. Conclusion : Thus, DMe may have more powerful efficacy on anti-oxidative effects when compared with DWe. And further studies have to be followed concerned with extraction of Dendrobii Herba and its change of effects.

  • PDF

Anti-Oxidative Effects of Scutellariae Radix (황금(黃芩)의 항산화 효과)

  • Oh, Won-Woo;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.20 no.3
    • /
    • pp.67-74
    • /
    • 2005
  • Objectives : This study was carried out to determine if Scutellariae Radix have protective effect against cell injury induced by various toxic agents in rat kidney slices. Methods : Water(SWe) and methanol(SMe) extracts were prepared for this experiment. Cell injury was estimated by measuring lactate dehydrogenase(LDH). Lipid peroxidation was examined by measuring malondialdehyde. Results : SMe prevented the LDH release by CCl4, menadione, tert-butyl hydroperoxide and mercury treatment in vitro in kidney slices, but SWe prevented the LDH release by CCl4 and mercury. SMe also prevented reduction in GSH by CCl4 and lipid peroxidation induced by mercury. Conclusions : Thus, SMe may have more powerful efficacy on anti-oxidative effects when compared with SWe. And further studies have to be followed concerned with procedure of extraction of SMe and its change of effects.

  • PDF

Hepatoprotective Effects of Poly Herbal Formulation (Hepa-1000) on t-BHP Induced Toxicity in Human Hepatoma Cells (간기능 개선용 복합 식물 추출물(Hepa-1000)의 tert-butyl hydroperoxide(t-BHP)로 유도한 간세포 독성에 대한 보호 효과)

  • Lee, Eu-Gene;Kim, Kyung-Bum;Jeong, Jong-Moon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1121-1126
    • /
    • 2006
  • In the present study, the potential hepatoprotective effects of poly herbal formulation, Hepa-1000, against oxidative damages induced by t-BHP were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. The t-BHP induced considerable cell damage in HepG2 cells was shown by significant glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH) leakage, and increased lipid peroxidation. Hepa-1000-treated cells showed an increased resistance to oxidative challenge, as revealed by higher survival capacity than the one of control cells against t-BHP induced oxidative stress and hepatotoxicity. In addition, the Hepa-1000 had hepatoprotective effects lowering the activity of GOT and LDH, simultaneously. That is, it could inhibit the cell membrane damages resulting in the increased activities of GOT and LDH in the cell culture media. Furthermore, the Hepa-1000 could reduce t-BHP enhanced lipid peroxidation, which was evaluated by measuring the production of malonedialdehyde. Based on the data described above, it could be suggested that the Hepa-1000 has significant hepatoprotective effects and plays a protective role against lipid peroxidation by free radicals.

Protective Effect of Functional Perilla frutescens Hot-water Extract Against tert-butyl hydroperoxide-Induced Liver Oxidative Damage in Rats (랫드에서의 t-BHP 유발 산화스트레스에 대한 기능성 들깻잎 열수 추출물의 간 보호 효과)

  • Yang, Sung-Yong;Kang, Jeong-Han;Lee, Kwang-Won
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.146-151
    • /
    • 2013
  • Perilla frutescens usually dieted in East Asian country such as Korea and Japan. Antioxidant, antiinflammatory and anticancer activities of perilla leaves have been founded. In previous study, we confirmed that caffeic acid, major compound of perilla, was accumulation by sucrose aqueous solution and thus antioxidant effect of perilla was enhanced. In this study, we investigated the protective effect of functional perilla leaves extract (PLE) against tert-butyl hydroperoxide(t-BHP) induced-oxidative hepatotoxicity. The pretreatment with PLE (250, 500 and 1000 mg/kg b.w.) for 5 days before a single dose of t-BHP (i.p.; 0.5 mmol/kg) significantly lowered the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase dose-dependently. And we confirmed that the indicators of oxidative stress were remarkably reduced in the liver, such as the glutathione contents and malondialdehyde, marker of lipid peroxidation. Pathological histology of the rat livers tissues showed that PLE reduced the hepatocyte degeneration and neutrophilic infiltration of liver induced by t-BHP. These results suggest that functional perilla frutescens has the protective effect of liver against t-BHP-induced oxidative hepatic stress in rats.

Protective effect of silk protein hydrolysates against tert-BHP induced liver damage (실크 단백질 가수분해물의 간 손상에 대한 보호효과)

  • Kim, Joo Hyoun;Suh, Hyung Joo;Choi, Hyeon-Son
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.107-115
    • /
    • 2017
  • The aim of this study was to investigate the hepatoprotecive effect of silk protein hydrolysates (SDH), which was prepared by acid hydrolysis, in rats. SDH itself did not exhibit any cytotoxic effect on hepatic tissues. SDH showed a protective effect on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity and liver damage. SDH effectively reduced AST (aspartate aminotransferase) and ALT (alanine aminotransferase), which are biomarkers for liver damage, in a dose-dependent manner. Malondialdehyde (MDA), a lipid peroxidation product, was significantly reduced by SDH. A high dose of SDH (2 g/kg) reduced t-BHP-induced MDA production by 40%. Glutathione (GSH), which is an endogenous antioxidant molecule, was effectively increased by SDH treatment. GSH content was enhanced by around 2.5-fold, compared with t-BHP control, upon SDH (2 g/kg) treatment. Lactate dehydrogenase (LDH), which is an enzyme released by cell cytotoxicity, was greatly increased by t-BHP, but significantly decreased by SDH treatment. Furthermore, hematoxylin and eosin (H&E) staining showed that SDH suppressed t-BHP-induced lesions in liver tissue. Taken together, SDH might be used as a protective agent against liver damage.