• 제목/요약/키워드: bus voltage regulation

검색결과 34건 처리시간 0.025초

A Three-Phase Four-Wire DSTATCOM for Power Quality Improvement

  • Singh, Bhim;Jayaprakash, P.;Kothari, D.P.
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.259-267
    • /
    • 2008
  • Power quality improvement in a three-phase four-wire system is achieved using a new topology of DSTATCOM (distribution static compensator) consisting of a star/delta transformer with a tertiary winding and a three-leg VSC (voltage source converter). This new topology of DSTATCOM is proposed for power factor correction or voltage regulation along with harmonic elimination, load balancing and neutral current compensation. A tertiary winding is introduced in each phase for a delta connected secondary in addition to the star-star windings and this delta connected winding is responsible for neutral current compensation. The dynamic performance of the proposed DSTATCOM system is demonstrated using MATLAB with its Simulink and Power System Blockset (PSB) toolboxes under varying loads. The capacitor supported DC bus of the DSTATCOM is regulated to the reference voltage under varying loads.

코호넨 신경회로망을 이용한 ULTC 변압기와 STACOM의 협조제어 (Coordination Control of ULTC Transformer and STACOM using Kohonen Neural Network)

  • 김광원;이흥재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1103-1111
    • /
    • 1999
  • STACOM will be utilized to control substation voltage in the near future. Although STACOM shows good voltage regulation performance owing to its rapid and continuous response, it needs additional reactive power compensation device to keep control margin for emergency such as fault. ULTC transformer is one of good candidates. This paper presents a Kohonen Neural Network (KNN) based coordination control scheme of ULTC transformer and STACOM. In this paper, the objective function of the coordination control is minimization of both STACOM output and the number of switchings of ULTC transformer while maintaining substation voltage magnitude to the predefined constant value. This coordination, control is performed based on reactive load trend of the substation and KNN which offers optimal tap position in view of STACOM output minimization. The input variables of KNN are active and reactive power of the substation, current tap position, and current STACOM output. The KNN is trained by effective Iterative Condensed Nearest Neighbor (ICNN) rule. This coordination control applied to IEEE 14 bus system and shows satisfactory results.

  • PDF

DC-DC Converter 특성검토 및 회로해석 (Investigation and Circuit Analysis for DC-DC Converter)

  • 황수설;이재득
    • 항공우주기술
    • /
    • 제5권2호
    • /
    • pp.166-173
    • /
    • 2006
  • 현대의 전자 장치는 안정적인 전력 공급을 위해 DC-DC Converter 등의 스위칭 전원을 사용하고 있다. 직류전원을 필요로 하는 통신장치는 안정적 동작과 높은 효율을 유지하기 위해 DC-DC Converter 등의 스위칭 전원의 사용이 불가피하며, 이는 에너지 절약이라는 시대적 요구에 부응하여 급속히 그 응용이 확산되고 있다. 이와같은 DC-DC Converter를 설계할 때는 각각의 동작 특징을 정확히 검토할 필요가 있다. 이를 위해 DC-DC Converter의 종류별 특성과 적용 분야 및 용도 분석을 통해 활용 분야를 파악하고, DC-DC Converter의 기본적 형태인 Buck type Converter를 선정하여 회로 설계 및 시뮬 레이션을 통해 이론적인 해석치과 설계치를 비교하였다.

  • PDF

대용량 병렬 양방향 컨버터를 이용한 배터리 충$\cdot$방전기 해석 (An Analysis of Battery Charger$\cdot$Dischrger using Parallel Connected Bi-directional Converter)

  • 최재동;안재황;성세진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.773-776
    • /
    • 2002
  • The battery charger of spacecraft has two different modes of operation respectively. One is the bus voltage regulation mode and the other is the charge current regulation mode. And also the battery discharger provide the power during eclipse mode of spacecraft. In this study, a test model of the battery charger and discharger using hi-directional converter are designed and analyzed. These Battery Charger and Discharger is introduced the modular converter method that can be added the converter modules according to the load variation.

  • PDF

Current Source ZCS PFM DC-DC Converter for Magnetron Power Supply

  • Kwon, Soon-Kurl
    • 조명전기설비학회논문지
    • /
    • 제23권7호
    • /
    • pp.20-28
    • /
    • 2009
  • This paper presents the design of zero current switching ZCS pulse frequency modulation type DC-DC converter for magnetron power supply. A magnetron serving as the microwave source in a microwave oven is driven by a switch mode power supply (SMPS). SMPSs have the advantages of improved efficiency, reduced size and weight, regulation and the ability to operate directly from the converter DC bus. The demands of the load system and the design of the power supply required to produce constant power at 4[kV]. A magnetron power supply requires the ability to limit the load current under short circuit conditions. The current source series resonant converter is a circuit configuration which can achieve this. The main features of the proposed converter are an inherent protection against a short circuit at the output, a high voltage gain and zero current switching over a large range of output power. These characteristics make it a viable choice for the implementation of a high voltage magnetron power supply.

Decentralized Input-Output Feedback Linearizing Controller for MultiMachine Power Systems : Adaptive Neural-Net Control Approach

  • Park, Jang-Hyun;Jun, Jae-Choon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.41.3-41
    • /
    • 2001
  • In this paper, we present a decentralized adaptive neural net(NN) controller for the transient stability and voltage regulation of a multimachine power system. First, an adaptively input-output linearizing controller using NN is designed to eliminate the nonlinearities and interactions between generators. Then, a robust control term which bounds terminal voltage to a neighborhood of the operating point within the desired value is introduced using only local information. In addition, we consider input saturation which exists in the SCR amplifier and prove that the stability of the overall closed-loop system is maintained regardless of the input saturation. The design procedure is tested on a two machine infinite bus power system.

  • PDF

Aging Analysis and Reconductoring of Overhead Conductors for Radial Distribution Systems Using Genetic Algorithm

  • Legha, Mahdi Mozaffari;Mohammadi, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2042-2048
    • /
    • 2014
  • In medium voltage electrical distribution networks, reforming the loss reduction is important, and in line with this, the issue of system engineering and use of proper equipment Expansion of distribution systems results in higher system losses and poor voltage regulation. Therefore, an efficient and effective distribution system has become more important. So, proper selection of conductors in the distribution system is crucial as it determines the current density and the resistance of the line. Evaluation of aging conductors for losses and costs imposed in addition to the careful planning of technical and economic networks can be identified in the network design. In this paper the use of imperialist competitive algorithm; genetic algorithm; is proposed to optimal branch conductor selection and reconstruction in radial distribution systems planning. The objective is to minimize the overall cost of annual energy losses and depreciation on the cost of conductors to improve productivity given the maximum current carrying capacity and acceptable voltage levels. Simulations are carried out on 69-bus radial distribution network using genetic algorithm approaches to show the accuracy as well as the efficiency of the proposed solution technique.

Effects of Wind Generation Uncertainty and Volatility on Power System Small Signal Stability

  • Shi, Li-Bao;Kang, Li;Yao, Liang-Zhong;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.60-70
    • /
    • 2014
  • This paper discusses the impacts of large scale grid-connected wind farm equipped with permanent magnet synchronous generator (PMSG) on power system small signal stability (SSS) incorporating wind generation uncertainty and volatility. Firstly, a practical simplified PMSG model with rotor-flux-oriented control strategy applied is derived. In modeling PMSG generator side converter, the generator-voltage-oriented control strategy is utilized to implement the decoupled control of active and reactive power output. In modeling PMSG grid side converter, the grid-voltage-oriented control strategy is applied to realize the control of DC link voltage and the reactive power regulation. Based on the Weibull distribution of wind speed, the Monte Carlo simulation technique based is carried out on the IEEE 16-generator-68-bus test system as benchmark to study the impacts of wind generation uncertainty and volatility on small signal stability. Finally, some preliminary conclusions and comments are given.

분산형 N+X 리던던트 UPS 시스템의 개발 (Distributed N+X Redundant UPS System)

  • 조준석;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.168-172
    • /
    • 2003
  • This paper presents a non-electrical isolated Prototype of N+X redundant UPS with two-quadrant converter. Proposed topology has multi-functions of battery charge and discharge regulation, operates with a near unity input power factor, compensates unbalanced voltage on U bus capacitors, and regenerates the circulating active power among the inverters into battery or grid. And furthermore, this system adopts a novel wireless parallel operation algorithm of N+X redundant UPS system with no control interconnections. Simulation and experiment results are provided in this paper to prove the validity of proposed topology and wireless control algorithm.

  • PDF

신재생에너지 계통 연계에 따른 송전망 Risk Level 평가에 대한 연구 (A Study on Evaluation for Risk Level in Transmission Network Connected with Renewable Energy)

  • 김성열;문상근;김진오
    • 조명전기설비학회논문지
    • /
    • 제25권2호
    • /
    • pp.87-95
    • /
    • 2011
  • A Renewable Portfolio Standard(RPS) is a regulation that requires the increased generation of energy from renewable energy sources such as solar, wind, fuel cell, small hydro, biomass and geothermal. By environmental, technical and these regulatory reasons, the amount of renewable energy sources will be increased in a network. However, it is hard to assess risk of a transmission network with large scale renewable energy sources because the output characteristics of renewable energies are intermittent. This paper evaluates effects of a transmission system with supplemental large scale renewable energies into the existing system. To evaluate these effects, a methodology for risk level of components in a network is proposed considering steady state and contingency N-1 in this paper. We consider line current and bus voltage in each state of a network.