• Title/Summary/Keyword: bus scheduling model

Search Result 18, Processing Time 0.024 seconds

Short-Term Generation Scheduling Considering Transmission Line Capacity Limits (선로용량한계를 고려한 단기 발전계획)

  • 김준현;송현선;유인근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.12
    • /
    • pp.594-602
    • /
    • 1986
  • This paper proposes an effective algorithm for short-term generation scheduling for the purpose of economic and secure operation of thermal power systems. Especially, in the procedure of solution by Dynamic Programming, Linear Programming is introduced to promote the possibility of optimal solution and the security of power systems, and evaluation of security function is improved by the application of seven step approximation of normal distribution. Several necessary considerations, that is, time dependent start-up and constant down cost of generating units, demand and spinning reserve constraints, minimum up and sown time constraints, the number of possible start-up of a generating unit in a d and the number of generating units which can be started up at the same time at the same bus, are also incoporated to elevate the usability and flexibility of the algorithm. Finally, the effectiveness of the proposed algorithm has been demonstrated by applying to the 6-gen. 21-bus model power system.

  • PDF

Optimal Headways of Urban Bus Services, Reflecting Actual Cycle Time and Demand (운행시간 및 수요 기반 버스 최적배차간격 산정에 관한 연구)

  • Kim, Sujeong;Shin, Yong Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.167-174
    • /
    • 2018
  • This study attempts to construct a model of optimal headway, focusing on a practical applicability to bus transit operation. Examining the existing bus operation and scheduling plans imposed by Busan City, we found that the plans failed to reasonably take into account such realities as varying traffic and operational conditions. The model is thus developed to derive the hourly optimal headway by routes satisfying the real-world conditions: varying hourly demand and cycle time, applying the model to routes 10 and 27 as examples. To do so, we collect big-dataset generated by smart card system and BIMS (Bus Inforamtion Management System). It is expected that the results of this study wil be a basis for further refined research in this field as well as for preparing practical timetables for bus operation.

Conceptual Design and Simulation of an Unmanned Battery Exchangeable Electric Bus Management System (배터리 자동 교체형 전기버스 운영 시스템의 개념적 설계 및 시뮬레이션)

  • Kim, Han-Ur;Park, Jun-Seok;Oh, Ha-Ryoung;Seong, Yeong-Rak
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.3
    • /
    • pp.63-72
    • /
    • 2014
  • The exchangeable battery electric bus is an eco-friendly public transportation vehicle. Due to the technological limitation, however, it should repeatedly change batteries with charged ones. The unmanned battery exchangeable electric bus being studied in Korea can exchange batteries automatically by using a battery swapping system. In this paper, we propose an unmanned battery exchangeable electric bus management system. The proposed system provides two services: the bus information service and the battery change scheduling service. The bus information service is the existing traditional metropolitan area bus information systems, which inform bus passengers how long they should wait for the buses. Our second service assigns a low-battery bus, which needs to change the batteries, to the battery swapping system, which stores fully-charged batteries. To validate the proposed system, we model the system by using the DEVS formalism. The simulation result shows that the proposed system provides the services properly.

A Study on Power Trading Methods for in a Hydrogen Residential Model (수소주거모델의 전력 거래 참여 방안 고찰)

  • KISEOK JEONG;TAEYOUNG JYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Participation in power trading using surplus power is considered a business model active in the domestic energy trade market, but it is limited only if the legal requirements according to the type, capacity, and use of the facilities to be applied for are satisfied. The hydrogen residential demonstration model presented in this paper includes solar power, energy storage system (ESS), fuel cell, and water electrolysis facilities in electrical facilities for private use with low-voltage power receiving system. The concept of operations strategy for this model focuses on securing the energy self-sufficiency ratio of the entire system, securing economic feasibility through the optimal operation module installed in the energy management system (EMS), and securing the stability of the internal power balancing issue during the stand-alone mode. An electric facility configuration method of a hydrogen residential complex demonstrated to achieve this operational goal has a structure in which individual energy sources are electrically connected to the main bus, and ESS is also directly connected to the main bus instead of a renewable connection type to perform charging/discharging operation for energy balancing management in the complex. If surplus power exists after scheduling, participation in power trading through reverse transmission parallel operation can be considered to solve the energy balancing problem and ensure profitability. Consequentially, this paper reviews the legal regulations on participation in electric power trading using surplus power from hydrogen residential models that can produce and consume power, gas, and thermal energy including hybrid distributed power sources, and suggests action plans.

Evaluation of Ramping Capability for Day-ahead Unit Commitment considering Wind Power Variability (풍력발전의 변동성을 고려한 기동정지계획에서의 적정 Ramping 용량 산정)

  • Lyu, Jae-Kun;Heo, Jae-Haeng;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.457-466
    • /
    • 2013
  • Wind energy is rapidly becoming significant generating technologies in electricity markets. As probabilistic nature of wind energy creates many uncertainties in the short-term scheduling, additional actions for reliable market operation should be taken. This paper presents a novel approach to evaluate ramping capability requirement for changes in imbalance energy between day-ahead market and real-time market due to uncertainty of wind generation as well as system load. Dynamic ramp rate model has been applied for realistic solution in unit commitment problem, which is implemented in day-ahead market. Probabilistic optimal power flow has been used to verify ramping capability determined by the proposed method is reasonable in economic and reliable aspects. This approach was tested on six-bus system and IEEE 118-bus system with a wind farm. The results show that the proposed approach provides ramping capability information to meet both forecasted variability and desired confidence level of anticipated uncertainty.

Long-Term Arrival Time Estimation Model Based on Service Time (버스의 정차시간을 고려한 장기 도착시간 예측 모델)

  • Park, Chul Young;Kim, Hong Geun;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.7
    • /
    • pp.297-306
    • /
    • 2017
  • Citizens want more accurate forecast information using Bus Information System. However, most bus information systems that use an average based short-term prediction algorithm include many errors because they do not consider the effects of the traffic flow, signal period, and halting time. In this paper, we try to improve the precision of forecast information by analyzing the influencing factors of the error, thereby making the convenience of the citizens. We analyzed the influence factors of the error using BIS data. It is shown in the analyzed data that the effects of the time characteristics and geographical conditions are mixed, and that effects on halting time and passes speed is different. Therefore, the halt time is constructed using Generalized Additive Model with explanatory variable such as hour, GPS coordinate and number of routes, and we used Hidden Markov Model to construct a pattern considering the influence of traffic flow on the unit section. As a result of the pattern construction, accurate real-time forecasting and long-term prediction of route travel time were possible. Finally, it is shown that this model is suitable for travel time prediction through statistical test between observed data and predicted data. As a result of this paper, we can provide more precise forecast information to the citizens, and we think that long-term forecasting can play an important role in decision making such as route scheduling.

The Spatial Correlation of Mode Choice Behavior based on Smart Card Transit Data in Seoul (교통카드 자료를 이용한 서울시 지역별 대중교통 수단 선택 공간상관성 분석)

  • Park, Man Sik;Eom, JinKi;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.623-634
    • /
    • 2013
  • In this study, we provide empirical evidence of whether a spatial correlation among mode choices at the TAZ(Traffic Analysis Zone) level exists based on transit smart card data observed in Seoul, Korea. The results show that the areas with a higher probability that passengers choose to take a bus are clustered and that those regions have fewer metro stations than bus stations. We also found that the spatial correlation turned out to be statistically meaningful and provided an opportunity for the potential use of the spatial correlation in modeling mode choices. A reliable spatial interaction would constitute valuable information for transportation agencies in terms of their route planning and scheduling based on the transit smart card data.

Application of Particle Swarm Optimization to the Reliability Centered Maintenance Method for Transmission Systems

  • Heo, Jae-Haeng;Lyu, Jae-Kun;Kim, Mun-Kyeom;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.814-823
    • /
    • 2012
  • Electric power transmission utilities make an effort to maximize profit by reducing their electricity supply and operation costs while maintaining their reliability. The development of maintenance strategies for aged components is one of the more effective ways to achieve this goal. The reliability centered approach is a key method in providing optimal maintenance strategies. It considers the tradeoffs between the upfront maintenance costs and the potential costs incurred by reliability losses. This paper discusses the application of the Particle Swarm Optimization (PSO) technique used to find the optimal maintenance strategy for a transmission component in order to achieve the minimum total expected cost composed of Generation Cost (GC), Maintenance Cost (MC), Repair Cost (RC) and Outage Cost (OC). Three components of a transmission system are considered: overhead lines, underground cables and insulators are considered. In regards to aged and aging component, a component state model that uses a modified Markov chain is proposed. A simulation has been performed on an IEEE 9-bus system. The results from this simulation are quite encouraging, and then the proposed approach will be useful in practical maintenance scheduling.