• Title/Summary/Keyword: buried pipelines

Search Result 186, Processing Time 0.033 seconds

Development of Split Tees for Gas Steel Pipelines (강재 가스배관용 분기티의 개발 연구)

  • Kim Young Gyu;Noh Ou Sun;Kim Ji Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.6-12
    • /
    • 2000
  • We have developed a new split tee which can be used to effectively branch into a main gas steel pipelines without losing any gas pressure or having to shut down a line. The split tee has been designed considering the locations of branch connection to the pipelines. Therefore, we could keep the depth of buried pipelines which used to be the problem of the conventional split tees. Test results of the developed split tee showed that the performance of the tightness, hydraulic strength, sealing, welding, bending, and compatibility were excellent. The application of the split tee can provide the advantage of eliminating cost and time, and easy field pipeline coatings.

  • PDF

Stability of onshore pipelines in liquefied soils: Overview of computational methods

  • Castiglia, Massimina;de Magistris, Filippo Santucci;Napolitano, Agostino
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.355-366
    • /
    • 2018
  • One of the significant problems in the design of onshore pipelines in seismic areas is their stability in case of liquefaction. Several model tests and numerical analyses allow investigating the behavior of pipelines when the phenomenon of liquefaction occurs. While experimental tests contribute significantly toward understanding the liquefaction mechanism, they are costly to perform compared to numerical analyses; on the other hand, numerical analyses are difficult to execute, because of the complexity of the soil behavior in case of liquefaction. This paper reports an overview of the existing computational methods to evaluate the stability of onshore pipelines in liquefied soils, with particular attention to the development of excess pore water pressures and the floatation of buried structures. The review includes the illustration of the mechanism of floating and the description of the available calculation methods that are classified in static and dynamic approaches. We also highlighted recent trends in numerical analyses. Moreover, for the static condition, referring to the American Petroleum Institute (API) Specification, we computed and compared the uplift safety factors in different cases that might have a relevant practical use.

Investigation for Earth Resistance and Leakage Current of D/L (배전선로 접지저항 및 누설전류 실태조사)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Ha, Y.C.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.379-381
    • /
    • 2003
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. This causes induced voltages on underground metallic pipelines due to the power line currents. This could cause AC corrosion in the pipeline, which could in turn lead to disastrous accidents, such as gas explosion or oil leakage. This paper investigates for the limitation of induced voltage on the buried metal structures which is used in the inside and outside of the country. And then we measure the earth resistance and leakage current of 22.9kV distribution lines and pipe to soil potential of near pipelines in Seoul Korea. Hereby we can see the leakage current flowing through the earthing electrode have an effect on near pipelines.

  • PDF

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

Stress Distribution of Buried Gas Transportation Pipeline According to Vehicle Load Velocity (지중 가스 수송 강관의 차량 이동 속도에 따른 응력 분포 특성)

  • Won, Jong-Hwa;Kim, Moon-Kyum;Yoo, Han-Kyu; Kim, Mi-Seoung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • In order to estimate the integrity and identify the dynamic characteristics of buried gas pipelines subjected to vehicle loads, FE analysis is performed based on the 'Highway and Local Road Design Criteria' and the 'KOGAS Guideline for Pipeline Management'. The FE model describes the current burial condition of Korea properly, and the DB-24 load model is adopted for this research. This study considers a varying velocity in the range of $40{\sim}160\;km/h$ and $P_i=8$ MPa(internal pressure) with depth cover, Z=1.5 m. Maximum stress occurs at v=80 km/h and decreases after v=80 km/h. The maximum induced stress by DB-24 loads is about 10 MPa. Under the design pressure, however, the analysis results show that API 5L Gr. X65 pipelines have sufficient integrity to withstand the vibration of vehicle loads.

  • PDF

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (단부 경계조건을 고려한 매설관의 동적응답 해석)

  • Jeong Jin-Ho;Lee Byong-Gil;Jung Du-Hwoe;Park Byung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.33-43
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. In order to investigate the effect of the boundary end conditions for the dynamic responses of the buried pipeline, we have devised a computer program to find the solutions of the formulae on the dynamic responses (displacements, axial strains, and bending strains) under the various boundary end conditions considered in this study, The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. We have observed a resonance when the mode wavelength matches the wavelength of the seismic wave, where the mode number(k) of resonance f3r the axial direction. On the other hand, we have not been able to observe a resonance in the analysis of the transverse direction, because the dynamic responses are found to vanish after the seventh mode. From the results of the dynamic responses at many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement, the strain and its position.

Effect of Surrounding Soil Properties on the Attenuation of the First Guided Longitudinal Wave Mode Propagating in Water-filled, Buried Pipes (주변 흙의 특성이 물이 찬 매립된 배관에서 전파되는 기본 유도 종파 모드 감쇠에 미치는 영향)

  • Lee, Ju-Won;Na, Won-Bae;Shin, Sung-Woo;Kim, Jae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.32-37
    • /
    • 2010
  • This study presents the attenuation characteristics of the first guided longitudinal wave mode propagating in water-filled, buried steel pipes in order to investigate the effects of soil saturation and compaction on the attenuation patterns. For numerical calculation of attenuation, 10 different combinations of S-wave velocity, P-wave velocity, and soil densities were considered. From the attenuation dispersion curves, which were obtained using Disperse software, we determined that the attenuation decreases as saturation increases, whereas it increases as compaction increases. Over the frequency range from 0.2 to 0.4 MHz, the first longitudinal wave mode has attenuations that are relatively lower than for other ranges, is faster than the first flexural wave mode, and is sensitive to defects aligned in the axial direction. Hence, the first longitudinal wave mode over the mentioned frequency range would be the proper choice for long-range buried pipelines that transport water.

Buried Polyethylene Gas Pipes Analysis using Finite Element Method under External Loadings (외부 하중에 대한 매설 폴리에틸렌 가스배관의 유한요소 해석)

  • Kil, Seong-Hee;Jo, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.49-55
    • /
    • 2007
  • Polyethylene pipes have been widely used as they are easy to construct and suitable for economical efficient when they are compared with metal pipelines. This paper studies the effect of various external loadings on stress and deflection of the buried PE pipes using Finite Element Method(FEM). For this purpose, stresses of buried PE pipes are calculated according to the loading condition such as pipe types (pipe diameter $50{\sim}400mm$), burial depths ($0.6{\sim}1.2m$) and internal pressures ($0.4{\sim}4bar$). As a result, it is founded the effect and relation with each of loading conditions under the buried condition.

  • PDF

Evaluation of fatigue poperties of base and weld metal for API 5L X65 pipeline (API 5L X65 배관 모재 및 용접부 피로특성 평가)

  • Kim, Cheol-Man;Baek, Jong-Hyun;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.44-48
    • /
    • 2001
  • The pipelines for natural gas transmission were buried in the ground of 1.5m depth. The pipelines were continuously subjected to vehicle load and internal pressure change by the quantity consumed of natural gas. In this paper, high cycle fatigue properties of natural gas transmission pipelines were studied. Fatigue specimens were obtained from the base and weld metal of circular pipe. Fatigue strength increased with increasing yield strength. Especially, the fatigue strength of base metal was higher than the yield strength of base metal and the fatigue strength of weld metal by manufactured process of TMCP.

  • PDF

Experiment on the Feasibility of Cleaning Building Pipelines using Ultrasonic Cavitation

  • Jo, Jae-Hyun;Lee, Ung-Kyun;Kim, Jae-Yeob;Lee, Sungchul;Kim, Kukhyun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.295-303
    • /
    • 2022
  • Residential heating systems in South Korea are largely based on the use of ondol pipelines. Heat is transferred to the floor by passing hot water through a metal or plastic pipe buried within the concrete of the floor. Consequently, it is difficult to clean the inside of these pipes after installation. Over time, foreign substances such as scale accumulate in the pipe when the ondol heating method is used for an extended period. Therefore, in the past, pipes were cleaned by removing foreign substances attached to the inside surfaces of the pipes using high-pressure water or by disassembling the pipes and removing foreign substances with chemical agents. Recently, a method for removing foreign substances through the cavitation effect of ultrasound has been proposed. This idea might lead to the development of new technologies for cleaning pipe interiors. Consequently, this study investigated the use of ultrasound to clean pipes embedded in concrete. In this study, devices that generated ultrasonic waves with various frequencies and directions were prepared. After preparing arbitrarily contaminated pipes, the appropriate frequency, output strength, and output direction for each foreign substance were determined through repeated experiments. The results of this experiment could provide important information for future methods of cleaning the interior of ondol piping systems.

  • PDF